
CDF
User's Guide

Version 2.6, October 1, 1998

National Space Science Data Center

Copyright c 1990 | 1998 NASA/GSFC/NSSDC

National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

DECnet | NSSDCA::CDFSUPPORT
Internet | cdfsupport@nssdca.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and
permission notice are preserved on all copies.

Contents

Preface xv

1 Primer 1

1.1 Introduction . 1

1.2 Why Use CDF? . 1

1.3 Conceptual Organization . 2

1.4 Features of the CDF Library . 2

1.4.1 File Format Options . 2

1.4.2 Data Encoding Options . 6

1.4.3 Compression . 6

1.4.4 Sparseness . 7

1.4.5 Variable Data Access Options . 8

1.5 Organizing Your Data in a CDF . 8

1.5.1 Variables . 8

1.6 Attributes . 12

1.7 CDF Toolkit . 13

1.8 Library Interface Routines . 13

1.8.1 Standard Interface . 14

1.8.2 Internal Interface . 14

1.9 Examples . 15

iii

iv CONTENTS

1.9.1 Creating a CDF, the Hard Way (But Not That Hard) 15

1.9.2 Creating a CDF, an Easier Way . 20

2 Concepts 27

2.1 CDF Library . 27

2.1.1 Interfaces . 27

2.1.2 CDF Modes . 29

2.1.3 Limits . 31

2.1.4 Scratch Files . 31

2.1.5 Caching Scheme . 32

2.2 CDFs . 33

2.2.1 Accessing . 33

2.2.2 Creating . 33

2.2.3 Opening . 33

2.2.4 Closing . 34

2.2.5 Deleting . 34

2.2.6 Naming . 34

2.2.7 Format . 35

2.2.8 Encoding . 36

2.2.9 Decoding . 39

2.2.10 Compression . 41

2.2.11 Limits . 41

2.3 Variables . 41

2.3.1 Types . 42

2.3.2 Accessing . 42

2.3.3 Opening . 42

2.3.4 Closing . 42

2.3.5 Naming . 43

CONTENTS v

2.3.6 Numbering . 43

2.3.7 Deleting . 43

2.3.8 Dimensionality . 44

2.3.9 Data Speci�cation . 44

2.3.10 Record Variance . 45

2.3.11 Dimension Variance . 45

2.3.12 Records . 46

2.3.13 Sparse Arrays . 52

2.3.14 Compression . 52

2.3.15 Majority . 53

2.3.16 Single Value Access . 54

2.3.17 Hyper Access . 55

2.3.18 Sequential Access . 57

2.3.19 Multiple Variable Access . 58

2.3.20 Variable Pad Values . 59

2.4 Attributes . 60

2.4.1 Naming . 61

2.4.2 Numbering . 61

2.4.3 Attribute Scopes . 61

2.4.4 Deleting . 62

2.4.5 Attribute Entries . 62

2.5 Data Types . 63

2.5.1 Integer Data Types . 63

2.5.2 Floating Point Data Types . 64

2.5.3 Character Data Types . 64

2.5.4 EPOCH Data Type . 64

2.5.5 Equivalent Data Types . 65

vi CONTENTS

2.6 Compression Algorithms . 65

2.6.1 Run-Length Encoding . 65

2.6.2 Hu�man . 65

2.6.3 Adaptive Hu�man . 66

2.6.4 GZIP . 66

3 Toolkit Reference 67

3.1 Introduction . 67

3.1.1 VMS, UNIX, & MS-DOS . 67

3.1.2 Macintosh . 68

3.1.3 Special Attributes . 70

3.1.4 Special Quali�er . 70

3.2 CDFedit . 71

3.2.1 Introduction . 71

3.2.2 Special Attribute Usage . 71

3.2.3 Executing the CDFedit Program . 71

3.2.4 Interaction with CDFedit . 74

3.3 CDFexport . 75

3.3.1 Introduction . 75

3.3.2 Special Attribute Usage . 75

3.3.3 Executing the CDFexport Program . 75

3.3.4 Interaction with CDFexport . 81

3.4 CDFconvert . 82

3.4.1 Introduction . 82

3.4.2 Executing the CDFconvert Program . 82

3.4.3 Output from the CDFconvert Program . 88

3.5 CDFcompare . 88

3.5.1 Introduction . 88

CONTENTS vii

3.5.2 Executing the CDFcompare Program . 89

3.5.3 Output from the CDFcompare Program . 92

3.6 CDFstats . 92

3.6.1 Introduction . 92

3.6.2 Special Attribute Usage . 93

3.6.3 Executing the CDFstats Program . 94

3.6.4 Output from the CDFstats Program . 97

3.7 SkeletonTable . 99

3.7.1 Introduction . 99

3.7.2 Special Attribute Usage . 99

3.7.3 Executing the SkeletonTable Program . 99

3.7.4 Output from the SkeletonTable Program . 104

3.8 SkeletonCDF . 104

3.8.1 Introduction . 104

3.8.2 Executing the SkeletonCDF Program . 104

3.8.3 Creating the Skeleton Table . 107

3.9 CDFinquire . 107

3.9.1 Introduction . 107

3.9.2 Executing the CDFinquire Program . 108

3.9.3 Output from the CDFinquire Program . 109

3.10 CDFdir . 109

3.10.1 Introduction . 109

3.10.2 Executing the CDFdir Program . 109

3.10.3 Output from the CDFdir Program . 110

3.11 CDFbrowse . 111

3.12 CDFlist . 111

3.13 CDFwalk . 111

viii CONTENTS

A Skeleton Table Format 113

A.1 Introduction . 113

A.2 Header Section . 114

A.3 gAttributes Section . 116

A.4 vAttributes Section . 118

A.5 rVariables Section . 119

A.6 zVariables Section . 122

A.7 End Section . 125

A.8 Example Skeleton Table . 126

B IDL Support 131

B.1 Introduction . 131

B.2 Using CDF's IDL Interface . 131

B.3 CDF \Include" Files . 132

B.3.1 Constant Structures . 132

B.3.2 Mapping Functions . 133

B.3.3 Individual Local Variables . 134

B.4 On-Line Help . 134

B.5 Available Functions . 134

B.6 Example IDL Session . 137

C Status Codes 139

C.1 Introduction . 139

C.2 Status Codes and Messages . 139

D Release Notes 149

D.1 Introduction . 149

D.2 Supported Systems . 149

D.3 Changes for CDF V2.6 . 150

CONTENTS ix

E Glossary 153

Index 161

x CONTENTS

List of Figures

1.1 Conceptual View of a CDF, 0-Dimensional rVariables . 3

1.2 Conceptual View of a CDF, 2-Dimensional rVariables . 4

1.3 Conceptual View of a CDF, zVariables . 5

1.4 Multi-File Format . 6

1.5 Single-File Format . 7

2.1 Physical vs. Virtual Dimensions . 46

2.2 Physical vs. Virtual Records, Standard Variable . 47

3.1 Window Sections, CDFedit . 75

xi

xii LIST OF FIGURES

List of Tables

1.1 Example Data Set | \Flat" Representation (0-Dimensional) 9

1.2 Example CDF | 2-Dimensional Representation (Conceptual) 9

1.3 Example CDF | Speci�cation for 2-Dimensional Representation 10

1.4 Example CDF | 2-Dimensional Representation (Physical) 11

1.5 vAttribute rEntries for the Temperature rVariable . 12

2.1 Standard Interface Routines . 28

2.2 Internal Interface Routines . 28

2.3 Cache Size Operations, Internal Interface . 33

2.4 Equivalent Byte Orderings . 38

2.5 Equivalent Single-Precision Floating-Point Encodings . 38

2.6 Equivalent Double-Precision Floating-Point Encodings . 39

2.7 Previous-missing Sparse Records Example, Conceptual View vs. Physical Storage 49

2.8 Default Pad Values . 60

2.9 Equivalent Data Types . 65

3.1 Example rVariables, CDFstats Monotonicity Checking . 93

xiii

xiv LIST OF TABLES

Preface

About This Document

This document is intended to serve as both a user's guide and reference manual for the Common Data
Format (CDF). As such, it provides a primer for introducing the novice reader to the concepts of CDF as
well as a reference manual for the advanced user.1 However, it does not serve as a cookbook for the proper
methods of designing a CDF.

The very �rst questions usually asked by a reader are: What is CDF?, How is CDF used?, and How is CDF
useful for me? Although the reader will �nd the answers to these questions in this document, we provide
here a brief description of the conceptual basis of CDF in order to provide a proper perspective when reading
the remainder of this document.

What is CDF?

CDF, in its most basic terms, is a conceptual data abstraction for storing, manipulating, and accessing
multidimensional data sets. We refer to CDF as a data abstraction because we never discuss the actual
physical format in which data sets are stored. Instead, we describe the form of the data sets and the means
(interface) by which they may be manipulated. This important di�erence from traditional physical �le
formats is reected in the orientation of the document toward de�ning form and function as opposed to a
speci�cation of the bits and bytes in an actual physical format. It is important to state here that the use
of a data abstraction in no way inhibits access to physical data or necessarily makes such access ine�cient.
It merely provides a way of generalizing the data model and makes possible the speci�cation of a uniform
interface for manipulation of a data set. The data abstraction allows future extensibility and provides for
conceptual simplicity while isolating machine and device dependence.

The contents of a CDF fall into two categories. The �rst is a series of records comprising a collection of
variables consisting of scalers, vectors, and n-dimensional arrays. The second is a set of attribute entries
(metadata) describing the CDF in global terms or speci�cally for a single variable. This dual function of CDF
is what provides its \data set independence." Both the data dictionary (attributes) and the data objects
(variables) are combined into an integrated data set. An important element of the CDF conceptual data
abstraction is the \virtual" dimensional layer that allows data objects that share a subset of the overall CDF
dimensionality to be projected into the full dimensional space. This capability is made available through the
use of logical dimensional variances that indicate the subset of CDF dimensions that are applicable.

How is CDF Used?

The origins of CDF date back to the development of the NASA Climate Data System at the National Space

1Programming reference manuals for C and Fortran users are provided as separate documents.

xv

Science Data Center (NSSDC). As such, it has had three main requirements driving its development.

1. Facilitate ingestion of data sets and data products into CDF.

2. Utilize standard common terminology (metadata) to describe the data sets.

3. Development of higher level applications (e.g., NSSDC Graphics System [NGS]).

The above requirements imply two classes of users for CDF. One user class performs primarily data acquisition
and is mainly involved in designing CDFs and the associated science metadata. The other user class builds
high-level applications interacting with CDF at the programming level. CDF has two levels of access: one
is through the programming interface layer and the other is through a high-level toolkit written using the
programming interface layer.

The toolkit provides utilities for creating new CDFs and for browsing existing CDFs. These are very useful
for architecturing a CDF and describing the metadata without using the programming level interfaces. The
browsing tools allow a quick look at CDF data sets and aid in CDF validation.

The programming layer (CDF library) provides the essential framework on which graphical and data analysis
packages can be created. The CDF library allows developers of CDF-based systems to easily create appli-
cations that permit users to slice data across multidimensional subspaces, access entire structures of data,
perform subsampling of data, and access one data element independently regardless of its relationship to any
other data element. CDF data sets are portable across any platform supported by CDF. These currently
consist of VAX (OpenVMS and POSIX shell), Sun (SunOS & SOLARIS), DECstation (ULTRIX), DEC
Alpha (OSF/1 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AIX),
HP 9000 series (HP-UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95, Linux, & QNX), and
Macintosh (MacOS).

How is CDF Useful to Me?

Hopefully, the answers to the �rst two questions have provided a basis for answering this question. It is
important to understand that CDF has been designed to solve a number of data management and storage
problems and has shown itself to be quite exible in storing a wide variety of data sets.

xvi

Chapter 1

Primer

1.1 Introduction

The CDF Primer is designed for scientists, researchers, programmers, and managers who want to learn about
CDF without reading through this entire document or the programming reference guides. The primer will
address what CDF is and how it can be used for storing and managing di�erent types of data. A brief
description of the tools and utilities available with CDF, in addition to program and toolkit examples, will
be given. More detailed descriptions of the concepts presented herein are provided in the accompanying
chapters of this document and the programming reference guides.

1.2 Why Use CDF?

When people �rst hear the term CDF they intuitively think of data formats in the traditional sense of the
word (i.e., messy/convoluted storage of data on disk or tape). CDF is more than just a format. CDF is a
\self-describing" format for managing data. In addition to the actual data being stored, CDF also stores
user-supplied descriptions of the data, known as metadata. This self-describing property allows CDF to be
a generic, data-independent format that can store data from a wide variety of disciplines.

In addition to being a self-describing data format, CDF is also a software library. The library routines are
callable from C and Fortran and allow the user to randomly access and manage data and metadata without
regard to their physical storage. This completely relieves the user of low-level I/O operations allowing more
time for data analysis. The actual format used to store the data and metadata is completely transparent to
the user.

The term \CDF" is also used to refer to the physical �les that the CDF library generates. A data set stored
using the CDF library is called a \CDF".

1

2 CHAPTER 1. PRIMER

1.3 Conceptual Organization

An important feature of CDF is that it can handle data sets that are inherently multidimensional in addition
to data sets that are scalar. To do this, CDF groups data by \variables" whose values are conceptually
organized into arrays. The dimensionality of these variable arrays depends upon the data and is speci�ed by
the user when the CDF or a variable is created. For scalar data, as an example, the array of values would be
0-dimensional (i.e., a single value); whereas for image data the array would be 2-dimensional. Similarly, the
array for volume data would be 3-dimensional. CDF allows users to specify arrays of up to ten dimensions.
The array for a particular variable is called a \variable record." A collection of arrays, one for each variable,
is referred to as a \CDF record." A CDF can, and usually does, contain multiple CDF records. This is
useful for data with repeated observations at di�erent times.

Two types of variables may exist in a CDF: rVariables1 and zVariables.2 Every rVariable in a CDF must
have the same number of dimensions and dimension sizes. In the scalar data example the CDF's rVariables
would be 0-dimensional, whereas for the image data example the CDF's rVariables would be 2-dimensional.
Figures 1.1 and 1.2 illustrate 0-dimensional and 2-dimensional rVariables, respectively. zVariables may have
a di�erent number of dimensions and/or dimension sizes than that of the rVariables in a CDF. Figure 1.3
illustrates several zVariables. Note that a CDF may contain both rVariables and zVariables.3 The term
\variable" is used when describing a property that applies to both rVariables and zVariables.

It is important to note that there is no single \correct" way to store data in a CDF. The user has complete
control over how the data values are stored in the CDF (within the con�nes of the variable array structure)
depending on how the user views the data. This is the advantage of CDF. Data values are organized in
whatever way makes sense to the user.

1.4 Features of the CDF Library

The CDF library is a exible and extensible software package that gives the user many options for creating
and accessing a CDF.

1.4.1 File Format Options

The CDF library gives the user the option to choose from one of two �le formats in which to store the data
and metadata. The �rst option is the traditional CDF multi-�le format, which is also the default. This
�le format is illustrated in Figure 1.4 (assuming a CDF containing four variables). The example.cdf �le
contains all of the control information and metadata for the CDF. In addition to the .cdf �le,4 a �le exists
for each variable in the CDF and contains only the data associated with that variable. This is illustrated by
the �les example.v0 through example.v3. The second option is the single-�le format, which, as illustrated
in Figure 1.5, consists of only the example.cdf �le. This �le contains the control information, metadata, and
the data values for each of the variables in the CDF. Both formats allow direct access. The advantage of the
single-�le format is that it minimizes the number of �les one has to manage and makes it easier to transport

1The \r" stands for \regular." rVariables are the type of variables that CDF has always supported. Perhaps \traditional"

would have been a better term. We also considered \related" and \correlated" but those just didn't seem right.
2The \z" doesn't stand for anything special. We just like the letter \z."
3This is generally not recommended. In those situations where zVariables are necessary it is best to use all zVariables rather

than a mixture of rVariables and zVariables.
4This �le is referred to as the dotCDF �le.

1.4. FEATURES OF THE CDF LIBRARY 3

Record

Number

rVariable

1

rVariable

2
. . .

rVariable

n

1 . . .

2 . . .

3 . . .

.

.

.

.

.

.

.

.

.

.

.

.

m . . .

Figure 1.1: Conceptual View of a CDF, 0-Dimensional rVariables

4 CHAPTER 1. PRIMER

Record

Number

rVariable

1

rVariable

2
. . .

rVariable

n

1 . . .

2 . . .

3 . . .

.

.

.

.

.

.

.

.

.

.

.

.

m . . .

Figure 1.2: Conceptual View of a CDF, 2-Dimensional rVariables

1.4. FEATURES OF THE CDF LIBRARY 5

Record
Number

zVariable
1

zVariable
2

. . . zVariable
n

1

2

3

.

.

.

.

.

.

.

.

.

.

.

.

m

Figure 1.3: Conceptual View of a CDF, zVariables

6 CHAPTER 1. PRIMER

CDFs across a network. The organization of the data within the single �le may, however, become somewhat
convoluted, slightly increasing the data access time. The multi-�le format, on the other hand, clearly delimits
the data from the metadata and is organized in a consistent fashion within the �les. Updating, appending,
and accessing data are also done with optimum e�ciency.

example.cdf

M

E

T

A

D

A

T

A

example.v0

D

A

T

A

example.v1

D

A

T

A

example.v2

D

A

T

A

example.v3

D

A

T

A

Figure 1.4: Multi-File Format

1.4.2 Data Encoding Options

When creating a CDF, a user has the option of using any of the supported encodings: VAX, Sun, SGi
Personal Iris and Power Series, DECstation, DEC Alpha/OSF1, DEC Alpha/OpenVMS (D FLOAT, G FLOAT

or IEEE FLOAT double-precision oating-point), IBM RS6000 series, HP 9000 series, NeXT, PC, Macintosh,
or network (XDR - eXternal Data Representation). The created CDF may then be copied to any of the
supported computers and read by the CDF library. When a value is read from the CDF, the CDF library
may be requested to decode the value into the encoding of the computer being used or any of the other
encodings (which may be desirable for various reasons). A CDF with any of the supported encodings may
be read from and written to on any supported computer.

1.4.3 Compression

A compression may be speci�ed for a single-�le CDF and the CDF library can be instructed to compress a
CDF as it is written to disk. This compression occurs transparently to the user. When a compressed CDF
is opened, it is automatically decompressed by the CDF library. An application does not have to even know

1.4. FEATURES OF THE CDF LIBRARY 7

example.cdf

M

E

T

A

D

A

T

A

&

D

A

T

A

Figure 1.5: Single-File Format

that a CDF is compressed. Any type of access is allowed on a compressed CDF. When a compressed CDF
is closed by an application, it is automatically recompressed as it is written back to disk.

The individual variables of a CDF can also be compressed. The CDF library handles the compression and
decompression of the variable values transparently. The application does not have to know that the variable
is compressed as it accesses the variable's values.

Several di�erent compression algorithms are supported by the CDF library. When compression is speci�ed
for a CDF or one of its variables, the compression algorithm to be used must be selected. There will be trade-
o�s between the di�erent compression algorithms regarding execution performance and disk space savings.
The nature of the data in a CDF (or variable) will a�ect the selection of the best compression algorithm to
be used.

1.4.4 Sparseness

Two types of sparseness are allowed for CDF variables: sparse records and sparse arrays. Sparse records are
available now | sparse arrays won't be available until a future CDF release. When a variable is speci�ed
as having sparse records, only those records actually written to that variable will be stored in the CDF.
This di�ers from variables without sparse records in that for those variables every record preceeding the
maximum record written is stored in the CDF. For example, if only the 1000th record were written to a
variable without sparse records, the 999 preceeding records would also be written using a pad value. If sparse
records had been speci�ed for the variable, only the 1000th record would be stored in the CDF (saving a

8 CHAPTER 1. PRIMER

considerable amount of disk space). Sparse records are ideal for variables containing gaps of missing data.

1.4.5 Variable Data Access Options

A program can access variable data one value at a time or it can access an entire multidimensional array
structure or substructure spanning contiguous or non-contiguous record boundaries. The latter feature
allows the user to perform aggregate access or uniform subsampling of the data at greatly increased rates
over traditional value by value access.

1.5 Organizing Your Data in a CDF

1.5.1 Variables

The �rst component of a CDF is the actual data, organized into arrays for the individual variables. CDF
can accommodate any type of data that can be organized into arrays. Two types of variables are supported:
rVariables and zVariables.

rVariables5

rVariables all have the same dimensionality (number of dimensions and dimension sizes). An example of
the type of data set that may be stored in a CDF's rVariables is shown in Table 1.1. Each record holds
one value for each of the four variables: Time, Longitude, Latitude, and Temperature. CDF can store
scalar data in a \at" (0-dimensional) representation such as this, but storage in this manner may hide
fundamental relationships among the data values. Consistent repetitions found in the data for this example
suggest another way to organize the data set. Note that every fourth record is an observation at the same
point on Earth at di�erent times. That fact is not immediately clear from this representation of the data.
Looking more closely, we note that only two di�ering values are recorded for Longitude and, similarly, only
two di�ering values are recorded for Latitude. This repetition suggests a 2-dimensional array structure
whose dimensions are de�ned by Longitude and Latitude. For each of the two Longitude values there
are two Latitude values. Time repeats for each Longitude/Latitude pair | the observations were taken
simultaneously at the longitude/latitude locations. Because of Time's repetition for Longitude/Latitude
pairs, the number of Time values speci�es the number of records needed in the CDF. Each record conceptually
contains a 2-dimensional array per rVariable (Table 1.2). The array structure de�nes the dimensionality of
the rVariables in the CDF. Although there are four rVariables, the array dimensions and the sizes of those
dimensions are determined only by Longitude and Latitude. Temperature varies across the entire array
while Time tells us how many records to expect. Therefore, the example, when reduced as described, de�nes
a CDF with 2-dimensional rVariables. The number of discrete values for each rVariable that de�nes a
dimension generates the size of that dimension. For example, Longitude has two unique values so the
dimension de�ned by Longitude has a size of two.

Adding another independent rVariable, for instance Pressure, poses no di�culty for the example. Temperature
would then be dependent on a speci�c Longitude, Latitude, and Pressure | a 3-dimensional array struc-
ture. In this 3-dimensional example Longitude, Latitude, and Pressure de�ne the number of dimensions
for the rVariables in the CDF, where the size of each dimension is determined by the number of discrete

5Although rVariables are described here �rst, the trend amoung CDF users is toward CDFs containing only zVariables.

zVariables are described in the next section.

1.5. ORGANIZING YOUR DATA IN A CDF 9

Record rVariables
Number Time Longitude Latitude Temperature

1 0000 -165. +40. 20.0
2 0000 -165. +30. 21.7
3 0000 -150. +40. 19.2
4 0000 -150. +30. 20.7
5 0100 -165. +40. 18.2
6 0100 -165. +30. 19.3
7 0100 -150. +40. 22.0
8 0100 -150. +30. 19.2
9 0200 -165. +40. 19.9
10 0200 -165. +30. 19.3
11 0200 -150. +40. 19.6
12 0200 -150. +30. 19.0
.
.
.
93 2300 -165. +40. 21.0
94 2300 -165. +30. 19.5
95 2300 -150. +40. 18.4
96 2300 -150. +30. 22.0

Table 1.1: Example Data Set | \Flat" Representation (0-Dimensional)

Record rVariables
Number Time Longitude Latitude Temperature

0000 | 0000 -165 | -150 +40 | +40 20.0 | 19.2

1 j j j j j j j j
0000 | 0000 -165 | -150 +30 | +30 21.7 | 20.7

0100 | 0100 -165 | -150 +40 | +40 18.2 | 22.0

2 j j j j j j j j
0100 | 0100 -165 | -150 +30 | +30 19.3 | 19.2

0200 | 0200 -165 | -150 +40 | +40 19.9 | 19.6

3 j j j j j j j j
0200 | 0200 -165 | -150 +30 | +30 19.3 | 19.0

.

.

.
2300 | 2300 -165 | -150 +40 | +40 21.0 | 18.4

24 j j j j j j j j
2300 | 2300 -165 | -150 +30 | +30 19.5 | 22.0

Table 1.2: Example CDF | 2-Dimensional Representation (Conceptual)

values contained in each of those rVariables. Additional dependent rVariables would be stored in the same

10 CHAPTER 1. PRIMER

way as Temperature.

Although conceptually there is a 2-dimensional array structure for each rVariable in each record of the CDF,
this would not be an e�cient way to store the data. For instance, the time for each record need only be stored
once as opposed to being stored four times as shown in each 2-dimensional array (Table 1.2). This problem
is circumvented by specifying \variances." For each rVariable there are variances associated with the array
dimensions as well as the records. \Record variance" indicates whether or not an rVariable has unique values
from record to record in the CDF. Time changes for each record so the record variance for Time is [TRUE].
One could also say that Time is record-variant. Latitude and Longitude repeat their values from record to
record so the record variance for each is [false]. Latitude and Longitude are non-record-variant (NRV).
The Temperature values change from record to record so they are record-variant. The record variances for
this example are shown in Table 1.3.

Similarly, the term \dimension variance" indicates whether or not an rVariable changes with respect to the
CDF dimensions. In the example above with 2-dimensional rVariables, the Longitude rVariable de�nes
the �rst dimension of the CDF with its values repeating along the second dimension so its dimension vari-
ances would be [TRUE,false]. The Latitude rVariable de�nes the second dimension of the CDF with its
values repeating along the �rst dimension so its dimension variances would be [false,TRUE]. Because the
Temperature values change for each latitude/longitude location, its dimension variances are [TRUE,TRUE].
Time does not change from one latitude/longitude location to another, so its values are the same along both
dimensions. The dimension variances for Time would be [false,false]. The dimension variances for the
above example are shown in Table 1.3.

rVariables
Time Longitude Latitude Temperature

Record Variance TRUE false false TRUE
First Dimension Variance false TRUE false TRUE

Second Dimension Variance false false TRUE TRUE

Table 1.3: Example CDF | Speci�cation for 2-Dimensional Representation

When the record and dimension variances have been de�ned correctly, the amount of physical storage needed
for the CDF is drastically reduced. In the above example, 2-dimensional arrays are not physically stored
for each rVariable in a CDF record. Instead, the physical storage for each rVariable consists of just one
value for Time in each CDF record, a single 1-dimensional array of values for the Longitude and Latitude

rVariables (in only the �rst CDF record), and a full 2-dimensional array of values for Temperature in each
CDF record. The actual physical storage (physical view) is shown in Table 1.4. The conceptual view of
the CDF, however, is still that of one 2-dimensional array per rVariable in each CDF record as shown in
Table 1.2 (the physically stored values are shown in boldface type).

zVariables

zVariables are similar to rVariables in all respects except that each zVariable can have a di�erent dimen-
sionality. This allows any set of variables to be stored in the same CDF without wasting space or creating
confusion in how the variables are logically viewed.

Consider a data set that consists of some number of images, each containing 1024 by 1024 pixels. The data
set also contains a palette that is used to map pixel values to the actual color/shade to be displayed. Palettes
are also referred to as lookup tables or color lookup tables. For this example assume that each image pixel
is stored in an 8-bit byte and the palette is a 1-dimensional array of 256 colors/shades. Indexing into the
palette array with a pixel value gives the appropriate color/shade to use.

1.5. ORGANIZING YOUR DATA IN A CDF 11

Record rVariables
Number Time Longitude Latitude Temperature

+40 20.0 | 19.2

1 0000 -165 | -150 j j j
+30 21.7 | 20.7

18.2 | 22.0

2 0100 j j
19.3 | 19.2

19.9 | 19.6

3 0200 j j
19.3 | 19.0

. . .

. . .

. . .
21.0 | 18.4

24 2300 j j
19.5 | 22.0

Table 1.4: Example CDF | 2-Dimensional Representation (Physical)

Attempting to store the images and the palette using only rVariables would result in one of two undesirable
situations. If the CDF's rVariables had a dimensionality of 2:[1024,1024]6 (to store the images), the
palette would have to be stored in a 1024 by 1024 array that does not make sense logically and would waste
disk space regardless of how the dimension variances are set. If the CDF's rVariables had a dimensionality
of 3:[1024,1024,256], the images could be stored in an rVariable having dimension variances T/TTF7 and
the palette could be stored in an rVariable having dimension variances F/FFT. This would not waste any
disk space but is not the intuitive way to store the data | nothing in the data set is 3-dimensional.

Using zVariables to store the images and palette would solve both problems. The images would be stored
in a zVariable with dimensionality 2:[1024,1024] (and variances of T/TT) and the palette would be stored
in a zVariable with a dimensionality of 1:[256] (and variances of F/T). This would waste no disk space and
logically makes sense.

The use of zVariables is recommended because of this added exibility. Note that zVariables can always be
used instead of rVariables. In the rVariable example where temperature values were being stored, zVariables
could also have been used. Each zVariable would have the same dimensionality and their dimension variances
would be used in the same way as they were used for the rVariables.

An even better example of how zVariables are preferred over rVariables in certain situations involves the
storage of 1-dimensional arrays (vectors). Assume that �ve 1-dimensional arrays are being stored with
dimension sizes of 2, 3, 5, 7, and 25. Using rVariables with a dimensionality of 1:[25] would waste
considerable space while using rVariables with a dimensionality of 5:[2,3,5,7,25] and dimension variances
of T/TFFFF, T/FTFFF, T/FFTFF, T/FFFTF, and T/FFFFT would be quite confusing to deal with. zVariables

6The notation for dimensionality used here is <num-dims>:[<dim-sizes>] where <num-dims> is the number of dimensions

and <dim-sizes> is zero or more dimension sizes separated by commas.
7The notation for variances used here is <rec-vary>/<dim-varys> where <rec-vary> is the record variance, T (TRUE) or F

(false), and <dim-varys> is zero or more dimension variances.

12 CHAPTER 1. PRIMER

with dimensionalities of 1:[2], 1:[3], 1:[5], 1:[7], and 1:[25] would be straight forward and e�cient.

1.6 Attributes

The second component of a CDF is the metadata. Metadata values consist of user-supplied descriptive infor-
mation about the CDF and the variables in the CDF by way of attributes and attribute entries. Attributes
can be divided into two categories: attributes of global scope (gAttributes) and attributes of variable scope
(vAttributes). gAttributes describe the CDF as a whole while vAttributes describe some property of each
variable (rVariables and zVariables) in the CDF. Any number of attributes may be stored in a single CDF.
The term \attribute" is used when describing a property that applies to both gAttributes and vAttributes.

gAttributes can include any information regarding the CDF and all of its variables collectively. Such descrip-
tions could include a title for the CDF, data set documentation, or a CDF modi�cation history. A gAttribute
may contain multiple entries (called gEntries). An example of this would be a modi�cation history kept in
the optional gAttribute, MODS. This attribute could be speci�ed at CDF creation time and a gEntry made
regarding creation date. Any subsequent changes made to the CDF, including additional variables, changes
in min/max values, or modi�cations to variable values could be documented by writing additional gEntries
to MODS.

vAttributes further describe the individual variables and their values. Examples of vAttributes would include
such things as a �eld name for the variable, the valid minimum and maximum, the units in which the variable
data values are stored, the format in which the data values are to be displayed, a �ll value for errant or
missing data, and a description of the expected order of data values: increasing or decreasing (monotonicity).
The entries of a vAttribute correspond to the variables in the CDF. Each rEntry corresponds to an rVariable
and each zEntry corresponds to a zVariable. Sample vAttribute rEntries for the Temperature rVariable from
the example above are shown in Table 1.5.

The term \entry" is used when describing a property that applies to gEntries, rEntries, and zEntries.

vAttribute rEntry value

FIELDNAM \Recorded temperature"
VALIDMIN -40.0
VALIDMAX 50.0
SCALEMIN 17.0
SCALEMAX 24.0

UNITS \deg C"
FORMAT \F4.1"
MONOTON \FALSE"
FILLVAL -999.9

Table 1.5: vAttribute rEntries for the Temperature rVariable

1.7. CDF TOOLKIT 13

1.7 CDF Toolkit

A set of utility programs are provided with the CDF distribution which allow a user to perform a variety of
operations on CDFs without having to write an application program. Each toolkit program is described in
detail in Chapter 3.

The available toolkit programs are as follows:

CDFedit8 Allows the display, creation, and modi�cation of attribute and variable data
in a CDF.

CDFexport9 Allows the contents of a CDF to be exported to the terminal screen, a text
�le, or another CDF. The CDF may be �ltered in order to export a subset
of its contents.

CDFconvert Allows the format, encoding, majority, compression, and sparseness of a
CDF to be changed. In all cases a new CDF is created. The original CDF
is not modi�ed.

SkeletonCDF10 Reads a specially formatted text �le (called a skeleton table) and creates a
skeleton CDF. A skeleton CDF is complete except for record-variant data.

SkeletonTable Reads a CDF and produces a specially formatted text �le called a skeleton
table. The skeleton table may be modi�ed and then input to SkeletonCDF
to create a skeleton CDF.

CDFinquire Displays the version of your CDF distribution, many of the con�gurable
parameters, and the default CDF toolkit quali�ers.

CDFstats Produces a report containing various statistics about the variables in a
CDF.

CDFcompare Reports the di�erences between two CDFs.

CDFdir Produces a directory listing of a CDF's �les. For a multi-�le CDF the
variable �les are listed in ascending numerical order.

1.8 Library Interface Routines

The CDF library supports two programming interfaces, the Standard Interface and the Internal Interface.
The Standard Interface is similar to the interface provided with Version 1 of CDF with several additions for
new features. The Internal Interface is provided to allow additional functionality to be added to the CDF
library without the need to modify the Standard Interface. Those features not available using the Standard
Interface are made available using the Internal Interface (e.g., access to zVariables). The Internal Interface
makes CDF extendable. The Standard and Internal interfaces are callable from both C and Fortran.

8CDFedit has replaced CDFbrowse. The alias/symbol CDFbrowse still exists in the \de�nitions" �le on UNIX/VMS systems

but now executes CDFedit in a browse-only mode.
9CDFexport has replaced CDFlist and CDFwalk.
10SkeletonCDF was previously named CDFskeleton.

14 CHAPTER 1. PRIMER

1.8.1 Standard Interface

The Standard Interface consists of three categories of software functions that are utilized to manipulate the
components that make up a CDF: general CDF functions, rVariable functions, and attribute functions.

The general CDF functions are as follows:

Callable from C Callable from Fortran Purpose
CDFcreate() CDF_create() Creates a new CDF.
CDFopen() CDF open() Opens an existing CDF.
CDFdoc() CDF doc() Inquires version/release and copyright notice.
CDFinquire() CDF inquire() Inquires rVariable dimensionality, etc.
CDFclose() CDF close() Closes a CDF.
CDFdelete() CDF delete() Deletes a CDF.
CDFerror() CDF error() Inquires error (status) code meaning.

The rVariable functions are as follows:

Callable from C Callable from Fortran Purpose
CDFvarCreate() CDF_var_create() Creates an rVariable.
CDFvarNum() CDF var num() Determines an rVariable number.
CDFvarRename() CDF var rename() Renames an rVariable.
CDFvarInquire() CDF var inquire() Inquires about an rVariable.
CDFvarPut() CDF var put() Writes an rVariable value.
CDFvarGet() CDF var get() Reads an rVariable value.
CDFvarHyperPut() CDF var hyper put() Writes one or more rVariable values.
CDFvarHyperGet() CDF var hyper get() Reads one or more rVariable values.
CDFvarClose() CDF var close() Closes an rVariable.

The attribute functions are as follows:

Callable from C Callable from Fortran Purpose
CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr rename() Renames an attribute.
CDFattrInquire() CDF attr inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF attr entry inquire() Inquires about an attribute rEntry.
CDFattrPut() CDF attr put() Writes an attribute rEntry.
CDFattrGet() CDF attr get() Reads an attribute rEntry.

The Standard Interface may be used to access only rVariables and the vAttribute rEntries for rVariables.
The Internal Interface must be used to access zVariables and the vAttribute zEntries for zVariables.

1.8.2 Internal Interface

The Internal Interface consists of one routine: CDFlib when called from C and CDF lib when called from
Fortran. The Internal Interface is used to perform all CDF operations. (In reality the Standard Interface
is implemented via the Internal Interface.) The Internal Interface is used to add new CDF features (e.g.,
zVariables) without having to change the Standard Interface.

1.9. EXAMPLES 15

1.9 Examples

In this section several examples of how to use the CDF library and toolkit will be presented. The same CDF
will be created two di�erent ways: by using just the CDF library and by using the CDF library with the
SkeletonTable toolkit program.

1.9.1 Creating a CDF, the Hard Way (But Not That Hard)

The �rst example program, written in C, creates a CDF with 2-dimensional rVariables using only CDF
library function calls. The CDF created will contain the data and metadata values used in the example
presented earlier in this chapter (minus some of the vAttributes/rEntries). An input �le, example.dat,
whose format is similar to that of Table 1.1 will be read and its data values written into the CDF.

/**

*

* NSSDC/CDF Create an example CDF (without using a skeleton table).

*

* Version 1.0, 5-Jan-94, CDF, Inc.

*

* Modification history:

*

* V1.0 5-Jan-94, Joe Programmer Original version.

*

**/

/**

*

* Note(s):

*

* This program would have to be modified to run on a DEC Alpha because the

* C language `long' data type is 8 bytes rather than 4 (the CDF data type of

* CDF_INT4 is always 4 bytes).

*

**/

/**

* Necessary include files.

**/

#include <stdio.h>

#include <stdlib.h>

#include "cdf.h"

/**

* Status handler.

**/

16 CHAPTER 1. PRIMER

void StatusHandler (status)

CDFstatus status;

{

char message[CDF_ERRTEXT_LEN+1];

if (status < CDF_WARN) {

printf ("An error has occurred, halting...\n");

CDFerror (status, message);

printf ("%s\n", message);

exit (status);

}

else

if (status < CDF_OK) {

printf ("Warning, function may not have completed as expected...\n");

CDFerror (status, message);

printf ("%s\n", message);

}

else

if (status > CDF_OK) {

printf ("Function completed successfully, but be advised that...\n");

CDFerror (status, message);

printf ("%s\n", message);

}

return;

}

/**

* MAIN.

**/

main () {

CDFid id; /* CDF identifier. */

CDFstatus status; /* CDF completion status. */

FILE *fp; /* File pointer - used to read input data file. */

long numDims = 2; /* Number of dimensions, rVariables. */

static long dimSizes[2] = {2,2}; /* Dimension sizes, rVariables. */

long dimVarys[2]; /* Dimension variances. */

long indices[2]; /* Dimension indices. */

long recNum; /* Record number. */

long attrNum; /* Attribute number. */

long TimeVarNum; /* 'Time' rVariable number. */

long LonVarNum; /* 'Longitude' rVariable number. */

long LatVarNum; /* 'Latitude' rVariable number. */

long TmpVarNum; /* 'Temperature' rVariable number. */

long Time; /* 'Time' rVariable value. */

float Lat; /* 'Latitude' rVariable value. */

1.9. EXAMPLES 17

float Lon; /* 'Longitude' rVariable value. */

float Tmp; /* 'Temperature' rVariable value. */

long TimeValidMin = 0; /* 'Time' valid minimum (0000). */

long TimeValidMax = 2359; /* 'Time' valid maximum (2359). */

float LonValidMin = -180.0; /* 'Longitude' valid minimum. */

float LonValidMax = 180.0; /* 'Longitude' valid maximum. */

float LatValidMin = -90.0; /* 'Latitude' valid minimum. */

float LatValidMax = 90.0; /* 'Latitude' valid maximum. */

float TmpValidMin = -40.0; /* 'Temperature' valid minimum. */

float TmpValidMax = 50.0; /* 'Temperature' valid maximum. */

/**

* Create the CDF.

**/

status = CDFcreate ("example1", numDims, dimSizes, NETWORK_ENCODING,

ROW_MAJOR, &id);

if (status != CDF_OK) StatusHandler (status);

/**

* Create rVariables.

**/

dimVarys[0] = NOVARY;

dimVarys[1] = NOVARY;

status = CDFvarCreate (id, "Time", CDF_INT4, 1L, VARY, dimVarys,

&TimeVarNum);

if (status != CDF_OK) StatusHandler (status);

dimVarys[0] = VARY;

dimVarys[1] = NOVARY;

status = CDFvarCreate (id, "Longitude", CDF_REAL4, 1L, NOVARY, dimVarys,

&LonVarNum);

if (status != CDF_OK) StatusHandler (status);

dimVarys[0] = NOVARY;

dimVarys[1] = VARY;

status = CDFvarCreate (id, "Latitude", CDF_REAL4, 1L, NOVARY, dimVarys,

&LatVarNum);

if (status != CDF_OK) StatusHandler (status);

dimVarys[0] = VARY;

dimVarys[1] = VARY;

status = CDFvarCreate (id, "Temperature", CDF_REAL4, 1L, VARY, dimVarys,

&TmpVarNum);

if (status != CDF_OK) StatusHandler (status);

18 CHAPTER 1. PRIMER

/**

* Create attributes.

**/

status = CDFattrCreate (id, "TITLE", GLOBAL_SCOPE, &attrNum);

if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMIN", VARIABLE_SCOPE, &attrNum);

if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMAX", VARIABLE_SCOPE, &attrNum);

if (status != CDF_OK) StatusHandler (status);

/**

* Write TITLE gAttribute gEntry.

**/

status = CDFattrPut (id, CDFattrNum(id,"TITLE"), 0L, CDF_CHAR, 50L,

"An example CDF (1). ");

if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Time' rVariable.

**/

status = CDFattrPut (id, CDFattrNum(id,"VALIDMIN"),

CDFvarNum(id,"Time"), CDF_INT4, 1L, &TimeValidMin);

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id,"VALIDMAX"),

CDFvarNum(id,"Time"), CDF_INT4, 1L, &TimeValidMax);

if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Longitude' rVariable.

**/

status = CDFattrPut (id, CDFattrNum(id,"VALIDMIN"),

CDFvarNum(id,"Longitude"), CDF_REAL4, 1L, &LonValidMin);

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id,"VALIDMAX"),

CDFvarNum(id,"Longitude"), CDF_REAL4, 1L, &LonValidMax);

if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Latitude' rVariable.

**/

status = CDFattrPut (id, CDFattrNum(id,"VALIDMIN"),

CDFvarNum(id,"Latitude"), CDF_REAL4, 1L, &LatValidMin);

1.9. EXAMPLES 19

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id,"VALIDMAX"),

CDFvarNum(id,"Latitude"), CDF_REAL4, 1L, &LatValidMax);

if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Temperature' rVariable.

**/

status = CDFattrPut (id, CDFattrNum(id,"VALIDMIN"),

CDFvarNum(id,"Temperature"), CDF_REAL4, 1L,

&TmpValidMin);

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id,"VALIDMAX"),

CDFvarNum(id,"Temperature"), CDF_REAL4, 1L,

&TmpValidMax);

if (status != CDF_OK) StatusHandler (status);

/**

* Read input values for rVariables and write them to the CDF. Not

* every value must be written to the CDF - many of the values are redundant.

* The 'Time' value only has to be written once per CDF record (every 4 input

* records). The 'Longitude' and 'Latitude' values are only written to the

* first CDF record (and only at the appropriate indices). Each 'Temperature'

* value read is written to the CDF.

**/

fp = fopen ("example.dat", "r");

if (fp == NULL) {

printf ("Error opening input file.\n");

exit (-1);

}

for (recNum = 0; recNum < 24; recNum++) {

for (indices[0] = 0; indices[0] < 2; indices[0]++) {

for (indices[1] = 0; indices[1] < 2; indices[1]++) {

fscanf (fp, "%d %f %f %f", &Time, &Lon, &Lat, &Tmp);

if (indices[0] == 0 && indices[1] == 0) {

status = CDFvarPut (id, TimeVarNum, recNum, indices, &Time);

if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[1] == 0) {

status = CDFvarPut (id, LonVarNum, recNum, indices, &Lon);

if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[0] == 0) {

20 CHAPTER 1. PRIMER

status = CDFvarPut (id, LatVarNum, recNum, indices, &Lat);

if (status != CDF_OK) StatusHandler (status);

}

status = CDFvarPut (id, TmpVarNum, recNum, indices, &Tmp);

if (status != CDF_OK) StatusHandler (status);

}

}

}

fclose (fp);

/**

* Close CDF.

**/

status = CDFclose (id);

if (status != CDF_OK) StatusHandler (status);

return;

}

1.9.2 Creating a CDF, an Easier Way

The CDF toolkit program SkeletonCDF is provided to make the task of creating a CDF easier for a pro-
grammer. SkeletonCDF reads a specially formatted text �le called a skeleton table and generates a skeleton
CDF. Everything about a CDF can be speci�ed in a skeleton table except data values for variables that vary
from record to record (record-variant). The toolkit program SkeletonTable is also provided. It reads an
existing CDF and produces a skeleton table. The skeleton table for the CDF created using only the CDF
library in Section 1.9.1 would be as follows.

! Skeleton table for the "example" CDF.

! Generated: Wed 5 Jan 1994 10:53:58

#header

CDF NAME: example1

DATA ENCODING: NETWORK

MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

4/0 1 2 1/z 2 2 2

#GLOBALattributes

! Attribute Entry Data

1.9. EXAMPLES 21

! Name Number Type Value

! --------- ------ ---- -----

"TITLE" 1: CDF_CHAR { "An example CDF (1). " -

" " } .

#VARIABLEattributes

"VALIDMIN"

"VALIDMAX"

#variables

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Time" CDF_INT4 1 T F F

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_INT4 { 0 }

"VALIDMAX" CDF_INT4 { 2359 } .

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Longitude" CDF_REAL4 1 F T F

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_REAL4 { -180.0 }

"VALIDMAX" CDF_REAL4 { 180.0 } .

! NRV values follow...

[1, 1] = -165.0

[2, 1] = -150.0

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

22 CHAPTER 1. PRIMER

"Latitude" CDF_REAL4 1 F F T

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_REAL4 { -90.0 }

"VALIDMAX" CDF_REAL4 { 90.0 } .

! NRV values follow...

[1, 1] = 40.0

[1, 2] = 30.0

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Temperature" CDF_REAL4 1 T T T

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_REAL4 { -40.0 }

"VALIDMAX" CDF_REAL4 { 50.0 } .

#end

Assuming that SkeletonCDF was used to create a CDF containing the metadata and data in the above
skeleton table, the following Fortran program would be used to complete the creation of the CDF.

PROGRAM exampleSKT

C--

C

C NSSDC/CDF Create an example CDF (using skeleton table).

C

C Version 1.0, 5-Jan-94, CDF, Inc.

C

C Modification history:

C

C V1.0 5-Jan-94, Joe Programmer Original version.

C

C--

INCLUDE '../../include/cdf.inc'

1.9. EXAMPLES 23

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! CDF completion status.

INTEGER*4 lun ! Logical unit number for input data file.

INTEGER*4 indices(2) ! Dimension indices.

INTEGER*4 rec_num ! Record number.

INTEGER*4 time_var_num ! 'Time' rVariable number.

INTEGER*4 tmp_var_num ! 'Temperature' rVariable number.

INTEGER*4 time ! 'Time' rVariable value.

REAL*4 lat ! 'Latitude' rVariable value.

REAL*4 lon ! 'Longitude' rVariable value.

REAL*4 tmp ! 'Temperature' rVariable value.

DATA lun/1/

C--

C Open the CDF.

C--

CALL CDF_open ('example2', id, status)

IF (status .NE. CDF_OK) CALL StatusHandler (status)

C--

C Determine rVariable numbers.

C--

time_var_num = CDF_var_num (id, 'Time')

IF (time_var_num .LT. CDF_OK) CALL StatusHandler (status)

tmp_var_num = CDF_var_num (id, 'Temperature')

IF (tmp_var_num .LT. CDF_OK) CALL StatusHandler (status)

C--

C Read input values for rVariables and write them to the CDF. Not

C every value must be written to the CDF - many of the values are redundant.

C The 'Time' value only has to be written once per CDF record (every 4 input

C records). The 'Longitude' and 'Latitude' values are not written at all

C because they had been specified in the skeleton table. Each 'Temperature'

C value read is written to the CDF.

C--

OPEN (lun, FILE='example.dat', ERR=99)

DO rec_num = 1, 24

DO x1 = 1, 2

DO x2 = 1, 2

indices(1) = x1

indices(2) = x2

24 CHAPTER 1. PRIMER

READ (lun, *, ERR=99) time, lon, lat, tmp

IF (indices(1) .EQ. 1 .AND. indices(2) .EQ. 1) THEN

CALL CDF_var_put (id, time_var_num, rec_num, indices,

. time, status)

IF (status .NE. CDF_OK) CALL StatusHandler (status)

END IF

CALL CDF_var_put (id, tmp_var_num, rec_num, indices,

. tmp, status)

IF (status .NE. CDF_OK) CALL StatusHandler (status)

END DO

END DO

END DO

CLOSE (lun, ERR=99)

C--

C Close CDF.

C--

CALL CDF_close (id, status)

IF (status .NE. CDF_OK) CALL StatusHandler (status)

STOP

C--

C Input file error handler.

C--

99 WRITE (6,101)

101 FORMAT (' ','Error reading input file')

STOP

END

C--

C Status handler.

C--

SUBROUTINE StatusHandler (status)

INTEGER*4 status

INCLUDE '../../include/cdf.inc'

CHARACTER message*(CDF_ERRTEXT_LEN)

IF (status .LT. CDF_WARN) THEN

1.9. EXAMPLES 25

WRITE (6,10)

10 FORMAT (' ','Error (halting)...')

CALL CDF_error (status, message)

WRITE (6,11) message

11 FORMAT (' ',A)

STOP

ELSE

IF (status .LT. CDF_OK) THEN

WRITE (6,12)

12 FORMAT (' ','Warning...')

CALL CDF_error (status, message)

WRITE (6,13) message

13 FORMAT (' ',A)

ELSE

IF (status .GT. CDF_OK) THEN

WRITE (6,14)

14 FORMAT (' ','Be advised that...')

CALL CDF_error (status, message)

WRITE (6,15) message

15 FORMAT (' ',A)

END IF

END IF

END IF

RETURN

END

The CDF was opened (since it already existed) and the values for only the Time and Temperature rVariables
were written to the CDF. All of the other functions performed by the program in Section 1.9.1 were done
by the SkeletonCDF program when it read the skeleton table.

26 CHAPTER 1. PRIMER

Chapter 2

Concepts

2.1 CDF Library

The CDF library is the only way to access a CDF. Various properties of the CDF library are described in
the following sections.

2.1.1 Interfaces

Several interfaces to the CDF library exist. They are described in the following sections.

Standard Interface

The Standard Interface provides a standard set of routines with which to access a CDF. Not all CDF features
are available with the Standard Interface. The Internal Interface must be used to perform operations not
available with the Standard Interface routines (e.g., access to zVariables). The Standard Interface is callable
from both C and Fortran applications. Table 2.1 lists the routines available when using the Standard
Interface. Each routine is described in detail in the corresponding programmer's guide.

Internal Interface

The Internal Interface may be used to perform all supported CDF operations. The Internal Interface must
be used to perform those operations not available with the Standard Interface. Table 2.2 lists the routines
available when using the Internal Interface. Each is described in detail in the corresponding programmer's
guide.

27

28 CHAPTER 2. CONCEPTS

Callable from C Callable from Fortran Purpose
CDFcreate() CDF_create() Creates a new CDF.
CDFopen() CDF open() Opens an existing CDF.
CDFdoc() CDF doc() Inquires version/release and copyright notice.
CDFinquire() CDF inquire() Inquires rVariable dimensionality, encoding, etc.
CDFclose() CDF close() Closes a CDF.
CDFdelete() CDF delete() Deletes a CDF.
CDFerror() CDF error() Inquires error (status) code meaning.

CDFvarCreate() CDF_var_create() Creates an rVariable.
CDFvarNum() CDF var num() Determines an rVariable number.
CDFvarRename() CDF var rename() Renames an rVariable.
CDFvarInquire() CDF var inquire() Inquires about an rVariable.
CDFvarPut() CDF var put() Writes an rVariable value.
CDFvarGet() CDF var get() Reads an rVariable value.
CDFvarHyperPut() CDF var hyper put() Writes one or more rVariable values.
CDFvarHyperGet() CDF var hyper get() Reads one or more rVariable values.
CDFvarClose() CDF var close() Closes an rVariable.

CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr rename() Renames an attribute.
CDFattrInquire() CDF attr inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF attr entry inquire() Inquires about an attribute entry.
CDFattrPut() CDF attr put() Writes an attribute entry.
CDFattrGet() CDF attr get() Reads an attribute entry.

Table 2.1: Standard Interface Routines

Callable from C Callable from Fortran Purpose
CDFlib () CDF_lib () Performs all available operations that can be

found in the CDF C and Fortran reference manuals.

Table 2.2: Internal Interface Routines

CDF's IDL Interface

The CDF distribution contains an interface that allows full access to the CDF library (and hence CDFs)
from within IDL. CDF's IDL interface consists of a set of functions that mirror the functions in the Standard
and Internal interfaces for C and Fortran applications. CDF's IDL interface is described in Appendix B.

IDL also provides its own interface to the CDF library (as well as other data formats) that di�ers from
CDF's IDL interface. The di�erences are mainly syntactic with the functionality of the two interfaces being
essentially the same. IDL's documentation describes their built-in CDF interface. Another di�erence between
the two interfaces is that CDF's IDL interface is only available on those computers that support dynamic
linking. Appendix B lists the computers on which this is the case.

2.1. CDF LIBRARY 29

2.1.2 CDF Modes

Once a CDF has been opened (or created and not yet closed), the CDF library may be con�gured to act on
that CDF in one or more modes. These modes are speci�ed independently for each open CDF.

Read-Only Mode

A CDF may be placed in read-only mode via the Internal Interface using the <SELECT ,CDF READONLY MODE >

operation.1 Only read access will be allowed on the CDF | all attempts to modify the CDF will fail. A
CDF may be toggled in and out of read-only mode any number of times. (Note that attempts to modify a
CDF may also fail if insu�cient access privileges exist for the CDF | the �le system enforces this access.)

zMode

A CDF may be placed into zMode2 via the Internal Interface using the <SELECT ,CDF zMODE > operation.
When in zMode a CDF's rVariables essentially disappear and are replaced by corresponding zVariables.3

Likewise, the rEntries for a vAttribute become zEntries (because they are now associated with zVariables).
While in zMode most operations involving rVariables/rEntries will fail. (Some inquiry operations will be
allowed. For example, inquiring the number of rVariables is allowed [but will always be zero].) When zMode
is used, the number of variables remains the same | rVariables simply change into zVariables. Note that
the existing contents of the CDF are not changed | the CDF simply appears di�erent.

Each new zVariable has the same exact properties as the corresponding (hidden) rVariable except for di-
mensionality and variances. The data speci�cation (data type and number of elements), pad value, etc. stay
the same. The dimensionality/variances of each zVariable are dependent on which zMode is currently being
used: zMode/1 or zMode/2. In zMode/1 the dimensionality/variances stay exactly the same. In zMode/2,
however, those dimensions with a false variance (NOVARY) are eliminated. Consider a CDF with an rVariable
dimensionality of 2:[180,360]4 containing the following rVariables.

rVariable Name Variances
EPOCH T/FF5

LATITUDE T/TF

LONGITUDE T/FT

HUMIDITY T/TT

If this CDF were to be placed into zMode/1, the following zVariables would replace the existing rVariables.

1This notation is used to specify a function to be performed on an item. The syntax is <function ,item >.
2There are actually two types of zMode | read on.
3In a future release of CDF, support for rVariables will be eliminated. zMode is provided to ease the transition from

rVariables to the more exible zVariables. rVariables are essentially a subset of zVariables.
4This notation is used throughout this document. In this case there are two dimensions whose sizes are 180 and 360. A

dimensionality of zero is represented as 0:[].
5This notation is also used throughout this document. The record variance is before the slash and the dimension variances

are after the slash. In this case the record variance is true (VARY) and the dimension variances are both false (NOVARY). The

variances for a 0-dimensional variable would be represented as T/ (if the record variance were true).

30 CHAPTER 2. CONCEPTS

zVariable Name Dimensionality Variances
EPOCH 2:[180,360] T/FF

LATITUDE 2:[180,360] T/TF

LONGITUDE 2:[180,360] T/FT

HUMIDITY 2:[180,360] T/TT

Note that the dimensionality of each zVariable is the same as it was for the rVariables in the CDF. However,
if zMode/2 were used, the following zVariables would replace the existing rVariables.

zVariable Name Dimensionality Variances
EPOCH 0:[] T/

LATITUDE 1:[180] T/T

LONGITUDE 1:[360] T/T

HUMIDITY 2:[180,360] T/TT

In this case the false dimensional variances were removed (which decreased the dimensionality in several of
the variables).

A CDF can be placed into or taken out of zMode any number of times while it is open. Each time the
zMode is changed for a CDF, it would be best to think of the CDF as being closed and reopened in that
zMode. The numbering of variable/entries may or may not be as you would expect (and the scheme used
could change in a future release of CDF). Most applications will simply select a zMode immediately after
opening a CDF. (zMode being o� is the default if a zMode is not selected.)

NOTE: Using zMode does not change the contents of a CDF. A CDF containing rVariables will appear to
contain only zVariables when in zMode. If the same CDF is then opened without using zMode, the rVariables
will still exist.

-0.0 to 0.0 Mode

The oating-point value -0.0 is legal on those computers which use the IEEE 754 oating-point represen-
tation (e.g., UNIX-based computers, the Macintosh, and the PC) but is illegal on VAXes and DEC Alphas
running OpenVMS. Attempting to use -0.0 results in a reserved operand fault on a VAX and a high perfor-
mance arithmetic fault on a DEC Alpha running OpenVMS. Because of this the CDF library can be told to
convert -0.0 to 0.0 when read from or written to a CDF. When reading from a CDF the values physically
stored in the CDF are not modi�ed | only the values returned to an application are converted. When
writing to a CDF the values physically stored are modi�ed | -0.0 is converted to 0.0 before being written
to the CDF. This mode is available on all supported computers but is only really necessary on VAXes and
DEC Alphas running OpenVMS. The CDF library is told to convert -0.0 to 0.0 for a CDF via the Internal
Interface using the <SELECT ,CDF NEGtoPOSfp0 MODE > operation. When this mode is disabled, a warning
(NEGATIVE FP ZERO) is returned when -0.0 is read from a CDF (and the decoding is that of a VAX or DEC
Alpha running OpenVMS) or written to a CDF (and the encoding is that of a VAX or DEC Alpha running
OpenVMS).

2.1. CDF LIBRARY 31

2.1.3 Limits

Open CDFs

The only limit on the number of CDFs that may be open simultaneously is the operating system's limit
on the number of open �les that an application may have. Each open CDF will always have at least one
associated open �le (the dotCDF �le). The CDF library will open and close the variable �les of a multi-�le
CDF as needed (see Sections 2.3.3 and 2.3.4).

2.1.4 Scratch Files

The CDF library will make use of scratch �les when necessary. These scratch �les are associated with an
open CDF. Scratch �les are used instead of core memory in an e�ort to prevent memory limitation problems
(especially on the Macintosh and PC). The following types of scratch �les are used.

Staging The staging scratch �le is used when a CDF contains compressed
variables. As each variable is accessed, a portion of the staging
scratch �le is allocated to hold a speci�c number of uncompressed
records for that variable. The number of records allocated de-
pends on the variable's blocking factor (see Section 2.3.12). The
staging scratch �le is also used (when necessary) with variables
having sparse records. If the records being written are not �rst
allocated, the staging scratch �le will be used to minimize the in-
dexing overhead (see Section 2.2.7) by trying to keep consecutive
records contiguous in the dotCDF �le.

Compression The compression scratch �le is used when writing to a compressed
variable in a CDF. Because the CDF library does not know how well
a block of variable records will compress, the compression algorithm
�rst writes the compressed block to the compression scratch �le.
The compressed block is then copied to the dotCDF �le. Note that
when reading a compressed variable, a compressed block of records
is decompressed directly to the staging scratch �le because the CDF
library knows the size of the uncompressed block of records.

Uncompressed dotCDF When overall compression is speci�ed for a CDF, the CDF library
maintains an uncompressed version of the dotCDF �le as a scratch
�le.

By default, these scratch �les are created in the current directory. On VMS systems the logical name CDF$TMP
can be de�ned with an alternate directory in which to create scratch �les. On UNIX and MS-DOS systems
the environment variable CDF TMP would be used. An application can also select a directory to be used
for scratch �les with the <SELECT ,SCRATCHDIR > operation of the Internal Interface (which will override a
scratch directory speci�ed with CDF$TMP/CDF TMP).

The caching scheme used by the CDF library (see Section 2.1.5) a�ects how these scratch �les can impact
performance. On machines with large amounts of core memory available, the cache size of a scratch �les can
be set high enough to result in no blocks actually being written (paged out) to that �le. In that case, the
scratch �le is more like an allocated block of core memory.

32 CHAPTER 2. CONCEPTS

2.1.5 Caching Scheme

The CDF library reads and writes to open �les in 512-byte blocks. A cache of 512-byte memory bu�ers is
maintained by the CDF library for each open �le. The CDF library attempts to keep in the cache the set
of �le blocks currently being accessed. This results in fewer actual I/O operations to the �le if repeated
accesses to these blocks would occur. When the cache is completely full and a new block of the �le is
accessed, one of the cache bu�ers is written back to the �le (if it was modi�ed) and the new block is read
into that cache bu�er (unless the �le is being extended in which case the cache bu�er is simply cleared).
This process is known as paging. By optimizing the number of cache bu�ers for a �le, improved performance
can be achieved. There is a tradeo� between having too few cache bu�ers and having too many. Having
too few cache bu�ers will cause excessive paging while having too many cache bu�ers may slow performance
because of the overhead involved in maintaining the cache (although this is very rare). Having too many
cache bu�ers may also cause problems on machines having limited memory such as the PC and Macintosh.

The CDF library attempts to choose optimal default cache sizes based on a CDF's format and the operating
system being used. This is di�cult because the CDF library does not know how an application will access
a CDF. For that reason an application may specify, via the Internal Interface, the number of cache bu�ers
to be used for a �le. The number of cache bu�ers may be changed as many times as necessary while a
�le is open (the �rst time will override the default used by the CDF library). Default cache sizes may be
con�gured for your CDF distribution when it is built and installed. Consult your system manager for the
values of these defaults (or use the CDFinquire toolkit program).

The situations in which it will be necessary to specify a cache size will depend on how a CDF is accessed.
For example, consider a variable in a multi-�le, row-major CDF having a dimensionality of 2:[10,64], a
data speci�cation of CDF REAL8/1, and variances of T/TT. This variable de�nition results in each record of
the variable being spread across 10 �le blocks with the second dimension varying the fastest (since the CDF's
variable majority is row-major). If single value reads were used to access this variable (see Section 2.3.16),
only one cache bu�er would be necessary for the variable �le if the second dimension were incremented the
fastest (i.e., [1,1], [1,2],. . . [10,63], [10,64]). This is because the values of a record would be accessed
sequentially from the �rst block to the last block. If, however, the �rst dimension were incremented the
fastest (i.e., [1,1], [2,1],. . . [9,64], [10,64]), 10 cache bu�ers would improve performance. The values of
a record are not being accessed sequentially but rather each read would be from a di�erent block. Since the
reads would be spread access 10 blocks, having (at least) 10 cache bu�ers would be optimal.

A similar situation arises when accessing standard variables in a single-�le CDF. If values are accessed for
each variable at a particular record number, then performance will be improved by setting the number of
cache bu�ers for the dotCDF �le to be equal to (or greater than) the number of variables. This is because the
variable values will most likely be located in that many di�erent �le blocks for a particular record number.

The Internal Interface is used to select and con�rm the cache sizes being used for various �les by the CDF
library. Con�rming a cache size (if it has not been explicitly selected) will determine the default being used.
The operations used for each type of �le are shown in Table 2.3.

NOTE: The default cache sizes used by the CDF library are fairly conservative in order to minimize the
problems that can arise due to memory limitations (especially on computers having limited memory such as
the PC and Macintosh). If the performance of your application is critical, it is very important to experiment
with using larger cache sizes. Signi�cant gains in performance can be achieved with the proper cache sizes.
It is also important to allocate records for uncompressed variables. This will reduce the fragmentation that
can occur in the dotCDF �le (which degrades performance because of the increased indexing that occurs).
Allocating variable records is described in Section 2.3.12.

2.2. CDFS 33

File type Selecting Con�rming
dotCDF �lea <SELECT ,CDF CACHESIZE > <CONFIRM ,CDF CACHESIZE >

rVariable �le <SELECT ,rVAR CACHESIZE > <CONFIRM ,rVAR CACHESIZE >

All rVariable �les <SELECT ,rVARs CACHESIZE > <CONFIRM ,rVARs CACHESIZE >

zVariable �le <SELECT ,zVAR CACHESIZE > <CONFIRM ,zVAR CACHESIZE >

All zVariable �les <SELECT ,zVARs CACHESIZE > <CONFIRM ,zVARs CACHESIZE >

Staging scratch �le <SELECT ,STAGE CACHESIZE > <CONFIRM ,STAGE CACHESIZE >

Compression scratch �le <SELECT ,COMPRESS CACHESIZE > <CONFIRM ,COMPRESS CACHESIZE >

aThis also applies to the uncompressed dotCDF �le of a compressed CDF that is maintained as a scratch �le.

Table 2.3: Cache Size Operations, Internal Interface

2.2 CDFs

The following sections describe various aspects of a CDF.

2.2.1 Accessing

Only Version 2 CDFs may be accessed with the current CDF distribution. Version 1 CDFs must be converted
to Version 2 CDFs using the CDFconvert program in a CDF distribution prior to CDF V2.5 before they will
be readable.

All supported CDF operations are available using the Internal Interface. A subset of these operations are
available using the Standard Interface. The Obsolete Interface is no longer supported. (Applications written
for CDF Version 1 must be ported to the Standard or Internal Interface of CDF Version 2.)

2.2.2 Creating

A CDF must be created by the CDF library. In a C application CDFs are created using either the CDFcreate
function (Standard Interface) or the <CREATE ,CDF > operation of the CDFlib function (Internal Interface).
In a Fortran application CDFs are created using either the CDF create subroutine (Standard Interface) or
the <CREATE ,CDF > operation of the CDF lib function (Internal Interface).

2.2.3 Opening

An application must open an existing CDF before access to that CDF is allowed by the CDF library. In a
C application CDFs are opened using either the CDFopen function (Standard Interface) or the <OPEN ,CDF >

operation of the CDFlib function (Internal Interface). In a Fortran application CDFs are opened using
either the CDF open subroutine (Standard Interface) or the <OPEN ,CDF > operation of the CDF lib function
(Internal Interface).

34 CHAPTER 2. CONCEPTS

2.2.4 Closing

It is absolutely essential that a CDF that has been created or modi�ed by an application be closed before
the program exits. If the CDF is not closed it will in most cases be corrupted and unreadable. This is
because the cache bu�ers maintained by the CDF library will not have been written to the CDF �le(s). An
existing CDF that has been opened and only read from should also be closed. In a C application CDFs
are closed using either the CDFclose function (Standard Interface) or the <CLOSE ,CDF > operation of the
CDFlib function (Internal Interface). In a Fortran application CDFs are closed using either the CDF close

subroutine (Standard Interface) or the <CLOSE ,CDF > operation of the CDF lib function (Internal Interface).

2.2.5 Deleting

An open CDF may be deleted at any time. The dotCDF �le is deleted along with any variable �les if a multi-
�le CDF. Note that if the CDF is corrupted and cannot be opened by the CDF library you will have to delete
the CDF �le(s) manually using the capabilities of the operating system being used. In a C application CDFs
are deleted using either the CDFdelete function (Standard Interface) or the <DELETE ,CDF > operation of the
CDFlib function (Internal Interface). In a Fortran application CDFs are deleted using either the CDF delete

subroutine (Standard Interface) or the <DELETE ,CDF > operation of the CDF lib function (Internal Interface).

2.2.6 Naming

The pathname speci�ed when opening or creating a CDF can be any legal pathname for the operating system
being used. This includes logical symbols on VMS systems and environment variables on UNIX systems.
Trailing blanks are also allowed but will be ignored. This is so Fortran applications do not have to be
concerned with the trailing blanks of a Fortran CHARACTER variable. (C character strings use terminating
NUL characters.)

In almost all cases when a CDF pathname is speci�ed, the .cdf extension should not be appended.6. (It
will be appended automatically by the CDF library.) The exception to this is when a user has renamed an
existing CDF with a di�erent extension or with no extension (for whatever reason). When a CDF is opened,
the CDF library �rst appends the .cdf extension to the pathname speci�ed and then checks to see if that �le
exists.7 If not, the CDF library will also check to see if a �le exists whose pathname is exactly as speci�ed
(without .cdf appended). If this is the case, the CDF must be single-�le. If the CDF is multi-�le, an error
occurs since the CDF library would have no idea as to how the variable �les had been renamed. Note also
that the CDF library always appends .cdf to the pathname speci�ed when creating a CDF.

NOTE: The CDF toolkit programs will in some cases not recognize a CDF if it does not have an extension
of .cdf.8

6The �le of a CDF having an extension of .cdf is referred to as the dotCDF �le
7Actually, the CDF library will check several possible extensions: .cdf, .cdf;1, .CDF, and .CDF;1. These extensions are

checked because some CD-ROM drivers (primarily on UNIX machines) do peculiar things when making the �les (e.g., CDFs)

on a CD-ROM visible.
8Or .cdf;1 or .CDF or .CDF;1.

2.2. CDFS 35

2.2.7 Format

There are two CDF formats: multi-�le and single-�le. The choice of which format to use will depend on how
the CDF is to be accessed. Note that the CDFconvert toolkit program can be used to change the format of
an existing CDF (creating a new CDF with the desired format).

The default format for a created CDF was determined when your CDF distribution was built and installed.
Consult your system manager for this default. In a user application, the Internal Interface must be used to
change the format of a CDF. The format of an existing CDF can be changed only if no variables have been
created in the CDF. If the SkeletonCDF toolkit program is used to create a CDF, the format is speci�ed in
the skeleton table (see Section 3.8).

A CDF's format is changed by using the <PUT ,CDF FORMAT > operation of the Internal Interface.

Single-File CDFs

A single-�le CDF (SINGLE FILE) consists of only one �le (with extension .cdf). This �le is referred to as
the dotCDF �le. The dotCDF �le contains the control information for the entire CDF, the attribute entry
data, and all of the variable data. An indexing scheme is used to provide e�cient access to variable records.

Indexing Scheme. In single-�le CDFs an indexing scheme is used to keep track of where a variable's
records are located within the dotCDF �le. The order that variable (and attribute entry) values are written
to a single-�le CDF by an application may result in a variable's records being noncontiguous. There will be
blocks of contiguous records, but these blocks will not be contiguous in the dotCDF �le.

For each variable in a single-�le CDF one or more index records will exist. Each of these index records will
contain one or more index entries. Because the indexing scheme is now hierarchical,9 each index entry will
point to either another index record (at a lower level in the hierarchy) or to a block of contiguous variable
records (at the lowest level of the hierarchy). An index entry consists of the following �elds:

FirstRecord The number of the �rst record in a block of contiguous variable records or
the �rst record indexed in a lower-level index record.

LastRecord The number of the last record in a block of contiguous variable records or
the last record indexed in a lower-level index record.

ByteOffset The byte o�set within the dotCDF �le of the block of contiguous variable
records or the byte o�set of a lower-level index record.

To �nd a particular variable record the CDF library must search through the index entries for that variable.
Improved performance will result if there are fewer index entries to search. This can be achieved by having a
larger number of records in each block of contiguous variable records (resulting in fewer overall index entries).
Techniques used to achieve fewer index entries are outlined in theAllocated Records andBlocking Factor
descriptions in Section 2.3.12.

It is possible to inquire the indexing statistics for a variable. Using the Internal Interface, an application
may inquire the number of indexing levels in the hierarchy, the number of index records, and total number

9As of CDF V2.6.

36 CHAPTER 2. CONCEPTS

of index entries for a variable using the <GET ,r/zVAR nINDEXLEVELS >,10 <GET ,r/zVAR nINDEXRECORDS >,
and <GET ,r/zVAR nINDEXENTRIES > operations.

Multi-File CDFs

A multi-�le CDF (MULTI FILE) consists of one �le (with extension .cdf referred to as the dotCDF �le)
containing control information and attribute entry data and a separate �le for each variable de�ned in the
CDF (with extensions .v0,.v1,. . . for rVariables and .z0,.z1,. . . for zVariables). Each variable �le contains
the data values for the corresponding variable. (The control information for each variable is stored in the
dotCDF �le.)

Performance

The most e�cient access to CDF variables will usually occur when the CDF has the multi-�le format. The
extra overhead involved with the indexing scheme used in single-�le CDFs is small, so the di�erence may
not be signi�cant (especially if hyper reads/writes are used). The drawback to using the multi-�le format
is that more than one �le is associated with a CDF (which may or may not be a problem for your system
management).

There is a case in which the single-�le format may be more e�cient. If a CDF has a large number of variables
(larger than the number of �les that may be open at once by an application) and the variables values are
accessed variable-by-variable (rather than accessing an entire variable before going to the next variable), the
multi-�le format may be much slower than the single-�le format. This is because the CDF library will have
to close one variable �le and then open another as each variable value is accessed by the application (since
the operating system's open �le limit will be reached). If the application was to access every value for a
variable before going on to the next variable, this would not occur (but it might create complications for the
application).

Note that the format of a CDF can also be converted using the CDFconvert toolkit program (which creates
a new CDF with the speci�ed format). Section 3.4 describes CDFconvert.

2.2.8 Encoding

The encoding of a CDF determines how attribute entry data and variable data values are stored on disk in
the CDF �le(s). An application program never has to concern itself with the encoding of the CDF being
accessed. The CDF library performs all of the encoding and decoding of data values for the application.

A CDF's encoding is speci�ed when the CDF is created when using the Standard Interface but is set to the
default encoding for your CDF distribution when created using the Internal Interface. The encoding of an
existing CDF may be changed with the Internal Interface if no variable values or attribute entries have been
written (variables and attributes may exist, however). If the SkeletonCDF toolkit program is used to create
a CDF the encoding is speci�ed in the skeleton table (see Section 3.8).

The encoding speci�ed when creating/modifying a CDF may be any of the native encodings for the computers

10This notation is used when an operation exists for both rVariables and zVariables. In this case, the actual operations are

<GET ,zVAR nINDEXLEVELS > and <GET ,rVAR nINDEXLEVELS >.

2.2. CDFS 37

supported by CDF in addition to network (XDR) encoding.11 A CDF with any supported encoding is also
readable on any computer supported by CDF.

Host Encodings

Host encoding (HOST ENCODING) speci�es that variable and attribute entry data values be written to the
CDF in the native encoding of the computer being used. In addition, the following explicit host encodings
are supported:

VAX ENCODING VAX and microVAX computers. Double-precision oating-point values are
encoded in Digital's D FLOAT representation.

ALPHAVMSd ENCODING DEC Alpha computers running OpenVMS. Double-precision oating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSg ENCODING DEC Alpha computers running OpenVMS. Double-precision oating-point
values are encoded in Digital's G FLOAT representation.

ALPHAVMSi ENCODING DEC Alpha computers running OpenVMS. Double-precision oating-point
values are encoded in IEEE representation.

ALPHAOSF1 ENCODING DEC Alpha computers running OSF/1.

SUN ENCODING Sun computers.

SGi ENCODING Silicon Graphics Iris and Power Series computers.

DECSTATION ENCODING DECstation computers.

IBMRS ENCODING IBM RS6000 series computers.

HP ENCODING HP 9000 series computers.

PC ENCODING PC personal computers.

NeXT ENCODING NeXT computers.

MAC ENCODING Macintosh computers.

When HOST ENCODING is speci�ed, it is translated to the actual host encoding from the above list. All host
encodings are readable and writeable on any machine supported by CDF.

Network Encoding

Network encoding (NETWORK ENCODING) speci�es that variable and attribute entry data values be written to
the CDF in the XDR (External Data Representation) format. As values are written to the CDF, the CDF
library encodes them into network encoding. Network encoded CDFs are readable and writeable on any
machine supported by CDF (as are all of the other encodings).

11This is a change from previous releases of CDF.

38 CHAPTER 2. CONCEPTS

Equivalent Encodings

While an encoding exists for each supported computer, not every encoding is di�erent. The following sections
describe which computers use the same encoding for the various data types.

Character/1-Byte Integer Data Types. Since each supported computer uses the ASCII character set
and orders the bits in a byte the same way, the character and 1-byte integer data types (CDF CHAR, CDF UCHAR,
CDF BYTE, CDF INT1, and CDF UINT1) are encoded in the same way on each.

Multiple-Byte Integer Data Types. The multiple-byte integer data types (CDF INT2, CDF UINT2,
CDF INT4, and CDF UINT4) are encoded in one of two ways: big-endian or little-endian. Big-endian has
the least signi�cant byte (LSB) in the highest memory location while little-endian has the LSB in the lowest
memory location. The supported computers use big-endian or little-endian as shown in Table 2.4. Network
(XDR) encoding uses big-endian encoding for multiple-byte integer data types.

Big-Endian Little-Endian
Sun VAX
SGi Iris DECstation
IBM RS6000 PC
HP 9000 DEC Alpha (OSF/1)
NeXT DEC Alpha (OpenVMS)
Macintosh
(Network - XDR)

Table 2.4: Equivalent Byte Orderings

Single-Precision Floating-Point Data Types. The single-precision oating-point encodings on the
supported computers are either IEEE 754 oating-point or Digital's F FLOAT oating-point. There are also
two di�erent byte orderings for the computers that use IEEE 754 (big-endian and little-endian). The single-
precision oating-point encodings for each supported computer are shown in Table 2.5. Network (XDR)
encoding uses IEEE 754 (big-endian) encoding for single-precision oating-point data types.

IEEE 754 (Big Endian) IEEE 754 (Little Endian) Digital's F FLOAT

Sun DECstation VAX
SGi Iris PC DEC Alpha/OpenVMS/D
IBM RS6000 DEC Alpha/OSF1 DEC Alpha/OpenVMS/G
HP 9000 DEC Alpha/OpenVMS/I
NeXT
Macintosh
(Network - XDR)

Table 2.5: Equivalent Single-Precision Floating-Point Encodings

Double-Precision Floating-Point Data Types. The double-precision oating-point encodings on the
supported computers are either IEEE 754 oating-point, Digital's D FLOAT oating-point, or Digital's G FLOAT

oating-point. There are also two di�erent byte orderings for the computers that use IEEE 754 (big-endian

2.2. CDFS 39

and little-endian). The double-precision oating-point encodings for each supported computer are shown in
Table 2.6. Network (XDR) encoding uses IEEE 754 (big-endian) encoding for double-precision oating-point
data types.

IEEE 754 (Big Endian) IEEE 754 (Little Endian)
Sun DECstation
SGi Iris PC
IBM RS6000 DEC Alpha/OSF1
HP 9000 DEC Alpha/OpenVMS/I
NeXT
Macintosh
(Network - XDR)

Digital's D FLOAT Digital's G FLOAT

VAX DEC Alpha/OpenVMS/G
DEC Alpha/OpenVMS/D

Table 2.6: Equivalent Double-Precision Floating-Point Encodings

Performance

The best performance when accessing (reading or writing) a CDF will occur when that CDF is in the host
encoding of the computer being used (and host decoding is in e�ect | see Section 2.2.9). This is because no
encoding or decoding has to be performed by the CDF library. A CDF that must be portable between two
or more di�erent types of computers should normally be network encoded. There may be cases, however,
where it would be desirable to create a CDF with host encoding (e.g., on a slow machine) and then transfer
it to a faster machine for processing or conversion to another encoding. Obviously, there are trade-o�s as
to which encoding should be used in any one particular case. Keep in mind that a CDF can always be
converted to the host encoding of the machine being used (with CDFconvert) before being accessed.

2.2.9 Decoding

The decoding of a CDF determines how attribute entry and variable data values are passed to a calling
application program from the CDF library. The default decoding when a CDF is initially opened is host
decoding (the native encoding of the computer being used). When host decoding is in e�ect, all data values
read by an application are immediately ready for manipulation and display. Almost all of your applications
will simply use the default of host decoding and not be concerned with selecting a decoding. There are
some situations, however, where selecting a di�erent decoding will be advantageous. Some possibilities are
as follows:

1. A client/server model where a number of CDFs are maintained on a server computer (in any of the
supported encodings). Clients on di�erent type computers could request data from a CDF on the
server computer. The server computer would then select a decoding for the CDF based on the client's
computer type and then read the data value(s). The value(s) could then be sent directly to the client
computer by the server computer without a conversion being necessary by either the client or the
server. The CDF library would perform the necessary conversions.

40 CHAPTER 2. CONCEPTS

2. If data values were being read from a CDF and written in binary form to a �le for use on a di�erent
type computer. The proper decoding could be selected for the CDF before any of the data values are
read. No conversions would be necessary by the application program.

A CDF's decoding may be selected and reselected at any time after the CDF has been opened and as many
times as necessary. A CDF's decoding is selected via the Internal Interface with the <SELECT ,CDF DECODING >

operation. Also, a CDF's decoding does not a�ect the values that already exist in a CDF or any values sub-
sequently written. A CDF's encoding determines how the values are written to the CDF �le(s). Section 2.2.8
describes a CDF's encoding.

The supported decodings correspond to the supported encodings. They are as follows:

HOST DECODING The data representation of the host computer. This is the default.

NETWORK DECODING The External Data Representation (XDR).

VAX DECODING VAX and microVAX data representation. Double-precision oating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING DECAlpha running OpenVMS data representation. Double-precision oating-
point values will be in Digital's D FLOAT representation.

ALPHAVMSg DECODING DECAlpha running OpenVMS data representation. Double-precision oating-
point values will be in Digital's G FLOAT representation.

ALPHAVMSi DECODING DECAlpha running OpenVMS data representation. Double-precision oating-
point values will be in IEEE representation.

ALPHAOSF1 DECODING DEC Alpha running OSF/1 data representation.

SUN DECODING Sun data representation.

SGi DECODING Silicon Graphics Iris and Power Series data representation.

DECSTATION DECODING DECstation data representation.

IBMRS DECODING IBM RS6000 series data representation.

HP DECODING HP 9000 series data representation.

PC DECODING PC data representation.

NeXT DECODING NeXT data representation.

MAC DECODING Macintosh data representation.

Performance

The best performance when reading a CDF will occur when the CDF's decoding is the same as the CDF's
encoding since no conversion will have to be performed by the CDF library. Since host decoding is the only
directly usable decoding by an application, CDFs with the host's encoding will provide the best performance.
Care should be taken when selecting the encoding for a CDF.

2.3. VARIABLES 41

2.2.10 Compression

A compression may be speci�ed for a single-�le CDF that is performed when the CDF is closed and written
to disk.12 This compression applies to the overall CDF | individual variables may instead be compressed
as described in Section 2.3.14. When compression is speci�ed for a CDF, the CDF library maintains an
uncompressed version of the dotCDF �le in a scratch �le. When the CDF is closed, the uncompressed
dotCDF �le is compressed and written to the pathname speci�ed when the CDF was opened/created. If the
application program closing the CDF were to abnormally terminate before the dotCDF �le was successfully
compressed and written, the uncompressed dotCDF scratch �le would remain in the scratch directory. The
scratch directory used by the CDF library is described in Section 2.1.4.

Overall compression for a CDF is speci�ed with the <PUT ,CDF COMPRESSION > operation of the Internal
Interface. It may be respeci�ed as often as desired. A CDF's overall compression may be inquired using
the <GET ,CDF COMPRESSION > operation for an open CDF and the <GET ,CDF INFO > operation for a CDF
that has not been opened (which saves the overhead of actually decompressing the CDF). The available
compression algorithms are described in Section 2.6.

2.2.11 Limits

Limits within a CDF are de�ned in the appropriate include �les: cdf.h for C applications and cdf.inc for
Fortran applications. The following limits exist:13

CDF MAX DIMS The maximum number of dimensions that rVariables/zVariables may have.

CDF VAR NAME LEN The maximum number of characters in a variable name.

CDF ATTR NAME LEN The maximum number of characters in an attribute name.

CDF PATHNAME LEN The maximum number of characters in a pathname used to specify a CDF.

Most of these limits can be raised. Contact CDF User Support if that becomes necessary.

2.3 Variables

CDF variables are the mechanism for storing data. (Attributes are used to store metadata.) A new variable
may be created in a CDF at any time. Two varieties of variables are supported: rVariables and zVariables.14

The main di�erence is that all rVariables in a CDF have the same dimensionality whereas zVariables can
have di�ering dimensionalities. In the following sections the di�erences between the two varieties will be
noted where appropriate.

12Compression is not allowed with multi-�le CDFs.
13Previous releases of CDF limited the number of variables a CDF could contain. That limit has been eliminated except for

multi-�le CDFs on an PC because of the 8.3 naming convention.
14The letters \r" and \z" don't stand for anything in particular. \r" sort of stands for \regular" since rVariables have always

been supported by CDF.

42 CHAPTER 2. CONCEPTS

2.3.1 Types

With the introduction of compression and sparseness for variables, there now exist several di�erent types of
variables (in addition to the distinction between rVariables and zVariables). The various types of variables
are as follows. . .

\standard variable" A variable in a single-�le CDF that is not compressed nor has
sparse records or arrays.

\compressed variable" A variable in a single-�le CDF that is compressed and may or
may not have sparse records (but cannot have sparse arrays).

\variable with sparse records" A variable in a single-�le CDF that has sparse records and may
be compressed, have sparse arrays, or have neither.

\variable with sparse arrays" A variable in a single-�le CDF that has sparse arrays and may
or may not have sparse records (but cannot be compressed).

\multi-�le variable" A variable in a multi-�le CDF. It cannot be compressed, have
sparse records, or have sparse arrays.

The term \variable" is used when a discussing a property that applies to all of the various variable types.

2.3.2 Accessing

The Standard Interface deals exclusively with rVariables. No access to zVariables is provided. The Internal
Interface may be used to access either rVariables or zVariables.

2.3.3 Opening

The CDF library automatically opens the variable �les in a multi-�le CDF as the variables are accessed. An
application never has to concern itself with opening variables. The opening of variables does not apply to
single-�le CDFs since individual �les do not exist for each variable.

2.3.4 Closing

The CDF library automatically closes the variable �les in a multi-�le CDF when the CDF itself is closed
by an application.15 Variable �les are also closed automatically by the CDF library as other variables are
accessed if insu�cient �le pointers exist to keep all of the variables open at once. This would be due to an
open �le quota enforced by the operating system being used.

A case also exists where it may be bene�cial for an application to close a variable in a multi-�le CDF.
Since each open variable �le uses some number of cache bu�ers, a large amount of system memory could
be in use (see Section 2.1.5). This may not be a problem on VAX or UNIX machines but could result

15It is required that an application close a CDF before exiting.

2.3. VARIABLES 43

in a program crashing on an MS-DOS machine. If memory is limited, an application may want to close
variables after they have been accessed in order to minimize the total number of cache bu�ers being used.
In a C application rVariables are closed using either the CDFvarClose function (Standard Interface) or
the <CLOSE ,rVAR > operation of the CDFlib function (Internal Interface). zVariables are closed using the
<CLOSE ,zVAR > operation of the CDFlib function (Internal Interface). In a Fortran application rVariables
are closed using either the CDF var close subroutine (Standard Interface) or the <CLOSE ,rVAR > operation
of the CDF lib function (Internal Interface). zVariables are closed using the <CLOSE ,zVAR > operation of
the CDF lib function (Internal Interface).

The closing of variables does not apply to single-�le CDFs since individual �les do not exist for each variable.

2.3.5 Naming

Each variable in a CDF has a unique name. This applies to rVariables and zVariables together (i.e., an
rVariable cannot have the same name as a zVariable). Variable names are case sensitive regardless of the
operating system being used and may consist of up to CDF VAR NAME LEN printable characters (including
blanks). Trailing blanks, however, are ignored when the CDF library compares variable names. "LAT" and
"LAT " are considered to be the same name, so they cannot both exist in the same CDF. This was done
because Version 1 of CDF padded variable names on the right with blanks out to eight characters. When
a Version 1 CDF was converted to a Version 2 CDF these trailing blanks remained in the variable names.
To allow CDF Version 2 applications to read such a CDF without having to be concerned with the trailing
blanks, the trailing blanks are ignored by the CDF library when comparing variable names. The trailing
blanks are returned as part of the name, however, when a variable is inquired by an application program.

2.3.6 Numbering

The rVariables in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting
at zero (0) for C applications. Likewise, the zVariables in a CDF are numbered consecutively starting at one
(1) for Fortran applications and starting at zero (0) for C applications. The CDF library assigns variable
numbers as the variables are created.

2.3.7 Deleting

A variable may be deleted from a single-�le CDF.16 Deleting a variable also causes the deletion of the
corresponding attribute entries for the variable. The disk space used by the variable de�nition, the variable's
data records, and the corresponding attribute entries becomes available for use as needed by the CDF
library. Also, the variables which numerically follow the variable being deleted are renumbered immediately.
(Each is decremented by one.) Variables are deleted using the <DELETE ,r/zVAR > operation of the Internal
Interface.

16Variables may not currently be deleted from a multi-�le CDF.

44 CHAPTER 2. CONCEPTS

2.3.8 Dimensionality

Variable values are stored in arrays. A variable's dimensionality refers to the number of dimensions and the
dimension sizes of these arrays.

Each rVariable in a CDF has the same dimensionality. An array of values exists for each rVariable at each
record in a CDF. The values may not be physically stored but may be virtual (see Sections 2.3.12, 2.3.10,
and 2.3.11).

A zVariable may have a dimensionality which is di�erent from that of the rVariables and the other zVariables.
An array of values exists for each zVariable at each record in a CDF. As with rVariables the values may not
be physically stored but may be virtual. zVariables are intended for use in those situations where using an
rVariable would waste disk space or not logically make sense.

A variable array having two or more dimensions also contains subarrays. For instance, in a 3-dimensional
array with dimension sizes [10,20,30], each array consists of ten 2-dimensional subarrays of size [20,30],
and each of those 2-dimensional subarrays consists of twenty 1-dimensional subarrays of size [30]. Subarrays
will be referred to when discussing other properties of CDF variables.

2.3.9 Data Speci�cation

Each variable in a CDF has a de�ned data speci�cation. A variable's data speci�cation consists of a data type
and a number of elements of that data type. A variable's data speci�cation is speci�ed when the variable
is created. The data speci�cation of an existing variable may also be changed if either of the following
conditions is true.

1. Values have not yet been written to the variable (including an explicitly written pad value | see
Section 2.3.20).

2. The old data type and new data type are considered equivalent, and the number of elements for the
variable are the same. Equivalent data types are described in Section 2.5.5.

Data Type

The supported data types are described in Section 2.5. Variables having any combination of data types may
exist in the same CDF.

Number of Elements

In addition to a data type, each variable also has a number of elements. This refers to the number of
elements of the data type at each variable value. For character data types (CDF CHAR and CDF UCHAR) this
is the number of characters in each string. (A variable value consists of the entire character string.) The
character string can be thought of as an array of characters. For non-character data types, this must always
be one (1). An array of elements per variable value is not allowed for non-character data types.

2.3. VARIABLES 45

2.3.10 Record Variance

A variable's record variance speci�es whether or not the variable's values change from record to record. The
e�ect of a variable's record variance is de�ned as follows.

VARY The values do change from record to record. Each variable record is physi-
cally written with no gaps between records (i.e., if a record more than one
beyond the maximum record is written, the intervening records are also
physically written and contain pad values). If a record is read beyond the
maximum record written to a variable, the pad value for the variable is
returned. Variables of this type are referred to as record-variant (RV).

NOVARY The values do not change from record to record. Only one record is phys-
ically written to the variable. Each record contains the same values (in-
cluding virtual records beyond the �rst record). Variables of this type are
referred to as non-record-variant (NRV).

Section 2.3.12 describes variable records in more detail.

A variable's record variance is speci�ed when the variable is created. The record variance of an existing
variable may be changed only if values have not yet been written to that variable. (An explicit pad value
may have been speci�ed however.)

2.3.11 Dimension Variance

A variable's dimension variances specify whether or not the values change along the corresponding dimension.
The e�ects of a dimension variance are de�ned as follows:

VARY The values do change along the dimension. All of the values for the dimen-
sion (or all of the subarrays) are physically stored.

NOVARY The values do not change along the dimension. Only one value (or subarray)
is physically written for that dimension. Each value (or subarray) along
that dimension is the same (including virtual values/subarrays beyond the
�rst value/subarray).

Figure 2.1 illustrates the e�ect of dimension variances on a variable with 2-dimensional arrays (for a particular
record). For variable 1 each value in the array is physically stored and therefore unique. Because variable
2 does not vary along the second dimension, each value along that dimension is the same so only one value
for that dimension is physically stored (the other values are virtual). The same is true for variable 3 which
does not vary along the �rst dimension. Variable 4 does not vary along either dimension. Only one value is
physically stored for the array | all of the other values are the same (they are virtual).

A variable's dimension variances are speci�ed when the variable is created. The dimension variances of an
existing variable may be changed only if values have not yet been written to that variable. (An explicit pad
value may have been speci�ed, however.)

46 CHAPTER 2. CONCEPTS

k l m n o

f g h i j

a b c d e

(VARY,VARY)
rVariable 1

c c c c c

b b b b b

a a a a a

(VARY,NOVARY)
rVariable 2

a b c d e

a b c d e

a b c d e

(NOVARY,VARY)
rVariable 3

a a a a a

a a a a a

a a a a a

(NOVARY,NOVARY)
rVariable 4

physical value virtual value

Figure 2.1: Physical vs. Virtual Dimensions

2.3.12 Records

A CDF record is a set of variable arrays, one per rVariable and one per zVariable in the CDF. The variable
arrays in a particular record are generally related to each other in some way (often time). This does not
have to be the case and is not enforced by the CDF library in any way. A variable record is simply the
corresponding variable array within a CDF record.

Physical variable records are actually stored in the CDF �le(s). Virtual variable records are not actually
stored but do exist in the conceptual view of the variable provided by CDF. Virtual records can occur in a
CDF because of the following reasons:

1. If a variable's values do not vary from record to record (record variance of NOVARY), all of that variable's
records beyond the �rst one are virtual and have the same values as the �rst record (only the �rst
record is physically stored). If a record has not yet been written to that variable, then all of its records
are virtual and contain the pad value for that variable.

2. If a variable's values do vary from record to record (record variance of VARY), then the records beyond
the last record actually written are virtual and contain the pad value for that variable.

3. If a variable has sparse records, then any unwritten records for that variable are virtual and contain
either the pad value for that variable or the previous existing record's values (depending on the type
of sparse records). Sparse records are described on page 48.

Record variance is described in Section 2.3.10. Variable pad values are described in Section 2.3.20.

The maximum record written is maintained by the CDF library for each variable in the CDF. The \maximum
CDF record" is simply the maximum rVariable record written (of all the rVariables). This quantity is
available through the Standard Interface when inquiring about a CDF. Because the Standard Interface does
not allow access to zVariables, zVariables are not considered when determining the \maximum CDF record."
The \maximum CDF record" would be used by applications dealing only with rVariables. The maximum
record written for each rVariable and zVariable is available via the Internal Interface.

Figure 2.2 illustrates the relationships between physical and virtual records for a standard variable. Variable
1 has �ve records that were physically written. Only two records were physically written to variable 2 so the

2.3. VARIABLES 47

following records are virtual (containing the pad value for that variable). Only one record can be physically
written to variable 3 because its record variance is NOVARY. The other records are virtual and contain the
same values as the �rst record. Because a record has not been physically written to variable 4, all of its
records are virtual containing the pad value for that variable. Likewise, since no records have been written
to variable 5, all of its records are also virtual and contain the pad value for that variable.

(VARY)

rVariable 1

(VARY)

rVariable 2

(NOVARY)

rVariable 3

(NOVARY)

rVariable 4

(VARY)

rVariable 5

physical record virtual record

Figure 2.2: Physical vs. Virtual Records, Standard Variable

Note that a variable's records do not have to be written sequentially starting at the �rst record. The records
may be written in any order. For a variable not having sparse records with a VARY record variance, if a new
record more than one record beyond the current maximum record for the variable is written, the intervening
records will be physically written and contain the pad value for that variable. For a variable having sparse
records, only those records written by an application are physically stored. Unwritten records are virtual as
described in Sparse Records on 48.

Also, when one or more values are written to a new physical record, the entire record is physically written
with the pad value for the variable being used for the unspeci�ed values (if any). The remaining values in

48 CHAPTER 2. CONCEPTS

the record may or may not be subsequently written. Variable pad values are described in Section 2.3.20.

Numbering

The record numbers in a CDF are numbered starting at one (1) for Fortran applications and starting at zero
(0) for C applications.

Sparse Records

A variable can be speci�ed as having sparse records. If so, then only those records that are explicitly written
to the variable will be physically stored. If a variable is not speci�ed as having sparse records, then all of the
records up to the maximum written will be physically stored. Sparse records are only allowed in single-�le
CDFs (where the indexing scheme used for variable records makes this possible). Considerable disk space
can be saved in the dotCDF �le for a variable that has gaps of missing data if that variable is speci�ed as
having sparse records.

For an uncompressed variable having sparse records, it is also bene�cial if the blocks of records that are
going to be written can �rst be allocated. This will allow the CDF library to optimize the indexing for the
variable. Otherwise, the CDF library will use the staging scratch �le to minimize the indexing needed. Note
that records cannot be allocated for compressed variables (whether or not they have sparse records).

Two types of sparse records can be speci�ed for a variable. They di�er only in how unwritten records are
presented in the conceptual view of the variable. These missing records are considered virtual records just
like the records beyond the last record written. Pad-missing sparse records speci�es that when a virtual
record is read the variable's pad value should be returned. Previous-missing sparse records speci�es that
when a virtual record is read the previous existing record's values should be returned. If a previous record
does not exist, the variable's pad value will be returned.

Note that previous-missing sparse records can also be used to save disk space for a variable if that variable's
values do not change from record to record except occasionally. If the only records written were those that
changed from the previous record, then the virtual records following each record actually written (physically
stored) would all have the same value(s). This could save considerable disk space if the values do not change
often. For example, consider a 0-dimensional variable having previous-missing sparse records that is being
used to store temperature data. Each record corresponds to a temperature reading at a given time. Table 2.7
shows how the variable might appear conceptually along with which records are physically stored. Note that
only three records are physically stored but that nine records appear in the conceptual view of the variable.

Sparse records are speci�ed for a variable using the <PUT ,r/zVAR SPARSERECORDS > operation of the Internal
Interface. One of the following types of sparse records must be speci�ed. . .

NO SPARSERECORDS The variable does not have sparse records.

PAD SPARSERECORDS The variable has pad-missing sparse records. The notation sRecords.PAD

is used by the CDF toolkit for pad-missing sparse records.

PREV SPARSERECORDS The variable has previous-missing sparse records. The notation sRecords.PREV
is used by the CDF toolkit for previous-missing sparse records.

The <GET ,r/zVAR SPARSERECORDS > operation can be used to inquire the type of sparse records.

2.3. VARIABLES 49

Record Temperature
1 101.4 (Physical)
2 101.4 (Virtual)
3 101.5 (Physical)
4 101.5 (Virtual)
5 101.5 (Virtual)
6 101.5 (Virtual)
7 101.5 (Virtual)
8 101.6 (Physical)
9 101.6 (Virtual)

Table 2.7: Previous-missing Sparse Records Example, Conceptual View vs. Physical Storage

Allocated Records

The Internal Interface may be used to allocate records for an uncompressed variable in a single-�le CDF.17

Normally the number of records allocated would be the number that are to be written (assuming this can
be determined). This can greatly improve performance when writing (and reading) values for the variable
because of reduced overhead when searching the index entries (as described in Section 2.2.7). The application
is normally expected to write to all of the allocated records. For NRV variables, only one record may be
allocated (because only one record will ever physically exist). If the variable has sparse records, only those
blocks of records that are going to be written would be allocated. Records cannot be allocated by an
application for compressed variables because they are allocated automatically by the CDF library when
their compressed size is known.

Performance is improved when using this method because the allocated records will be as contiguous as
possible requiring the fewest number of index entries. This will greatly improve the time needed to locate a
particular record when the variable is accessed. In addition, the CDF will be slightly smaller because of the
reduced number of index records.

Note that records do not have to be allocated by an application before they are written to a variable. The
CDF library will automatically allocate any needed records based on the variable's blocking factor. Also,
records may be allocated at any time (not only before records have been written as in previous CDF releases).

Records are allocated using the <PUT ,r/zVAR ALLOCATERECS > and <PUT ,r/zVAR ALLOCATEBLOCK > oper-
ations of the Internal Interface. The number of records allocated for a variable can be inquired using the
<GET ,r/zVAR NUMallocRECS > operation. The maximum record allocated for a variable can be inquired
using the <GET ,r/zVAR MAXallocREC > operation. The exact records allocated for a variable can be de-
termined using a combination of the <GET ,r/zVAR ALLOCATEDTO > and <GET ,r/zVAR ALLOCATEDFROM >

operations.

Initial Records

The Internal Interface may be used to specify an initial number of records to be written for a variable.18

The pad value for the variable is written at each record as if the application had done so itself. The Internal
Interface allows this to be done more conveniently with only one function call. Note that the default pad

17There is no reason to allocate records for a variable in a multi-�le CDF.
18The use of allocated records would in most cases be more e�cient than specifying initial records.

50 CHAPTER 2. CONCEPTS

value for the variable's data type will be used unless a pad value is explicitly speci�ed for the variable. If
a speci�c pad value is desired for a variable, then it must be speci�ed before the number of initial records
is speci�ed. Also, any compression or sparseness for the variable must be speci�ed before writing the initial
records because those properties cannot be changed after records have been written.

Specifying a number of initial records for a variable would usually be done only for a CDF with the single-�le
format. Because the records would be allocated as contiguously as possible within the CDF �le, the indexing
scheme (see Section 2.2.7) would require fewer entries making the access to that variable more e�cient. Note
that this method is not as e�cient as allocating records in those cases where all of the records are going to
be written by the application. This is because the records would be written twice | once with the pad value
and then again by the application.

The number of initial records speci�ed would in most cases be the number of records planned for a variable.
Note that additional records may be added to a variable at any time. For NRV variables the number of
initial records must always be speci�ed as one (1). This is because only one physical record will ever actually
be written. Initial records for a variable may be speci�ed only once.

Initial records are written to variables using the <PUT ,r/zVAR INITIALRECS > operation of the Internal
Interface. Explicit pad values are speci�ed using the <PUT ,r/zVAR PADVALUE > operation.

Blocking Factor

A variable's blocking factor19 a�ects how records are allocated in the CDF �le(s). For NRV variables the
blocking factor is not applicable because only one physical record will ever exist. For variables in a multi-
�le CDF the blocking factor is not used because only those records written by an application will exist in
the variable �les. But for the other types of variables in a single-�le CDF the blocking factor can have a
signi�cant impact. The following sections will describe how a variable's blocking factor is used in each case.

Standard Variables. Space in the dotCDF �le for records written to a standard variable is either al-
located explicitly by an application or automatically by the CDF library. If the records are allocated by
the application the exact number needed can be speci�ed. This can be used to optimize the indexing for
the variable resulting in fewer (or even just one) index entries that must be searched when accessing the
variable. If the records are not allocated by the application, however, they must be automatically allocated
by the CDF library. Because the CDF library wants to optimize the indexing for a variable, it may allocate
additional records beyond those needed at the time in an attempt to minimize the number of index entries.
The variable's blocking factor speci�es the minimum number of records to allocate when an application
writes to an unallocated record. This is based on the assumption that the addition records allocated will
eventually be written. If that is not the case, the allocated but unwritten records will simply waste space
in the dotCDF �le. The best way to prevent that situation is for an application to explicitly allocate the
records that are going to be written. An application can specify a blocking factor for a variable or let the
CDF library use a default blocking factor. Note that setting the blocking factor too low (and not allocating
the records being written) may result in excessive indexing for a variable. Even using the default blocking
factor for a variable may result in excessive indexing unless the records to be written are �rst allocated. The
indexing scheme used by the CDF library is described in Section 2.2.7.

19A variable's blocking factor was previous called its \extend records."

2.3. VARIABLES 51

Compressed Variables. The blocking factor for compressed variables speci�es the number of records that
will be compressed together. The CDF library stages the records of a compressed variable in a scratch �le.
The number of records in the staging area is also based on the variable's blocking factor. When necessary,
the CDF library compresses the records in the staging area and writes the compressed block of records to
the dotCDF �le. Each block of compressed records has an associated index entry (see Section 2.2.7). Setting
the blocking factor high will minimize the indexing for a variable but will increase the time needed to access
an individual record because the entire block in which it is compressed will have to be decompressed. If
the blocking factor is too low, the decompression of an individual record will not take as long but excessive
indexing may result (which will increase the access overhead). Also, most compression algorithms work
better as the number of records (bytes) being compressed is increased. Note that if the compressed variable
also has sparse records, the blocking factor becomes the maximum number of records per compressed block.
Depending on which records are written some of the compressed blocks may contain fewer records. The
blocking factor for a compressed variable may be explicitly speci�ed by an application or a default may
be used as determined by the CDF library. Once a record has been written to the variable, however, the
blocking factor cannot be changed.

Uncompressed Variables With Sparse Records. The CDF library uses a staging area scratch �le
for uncompressed variables with sparse records. This is done in an attempt to minimize the indexing for
the variable (as described in Section 2.2.7) when the records being written are not �rst allocated by an
application. The blocking factor speci�es the number of records to be maintained in the staging area for
the variable (which will be the maximum number of unallocated consecutive records that would be stored
contiguously in a block when written by an application). An explicit blocking factor can be speci�ed or a
default determined by the CDF library may be used.

Blocking factors are explicitly speci�ed for variables using the <PUT ,r/zVAR BLOCKINGFACTOR > operation
of the Internal Interface. The blocking factor may be inquired using the <GET ,r/zVAR BLOCKINGFACTOR >

operation. If an explicit blocking factor has not been speci�ed, the default blocking factor for the variable
will be returned.

Note the distinction between records allocated and records actually written. The CDF library may allocate
more records than are actually written by an application for the reasons stated above. Both the number of
records written to a variable and the number of records allocated for that variable may be inquired using
the Internal Interface.

Deleting

The records of a variable in a single-�le CDF may be deleted.20 If the variable has sparse records, the deleted
records simply cease to exist. A gap of one or more missing records will be formed. But if the variable does
not have sparse records, the records following the block of deleted records are immediately renumbered to
�ll in the gap created. The record numbers remain consecutive without a gap.

Variable records are deleted using the <DELETE ,r/zVAR RECORDS > operation of the Internal Interface.

20Variable records may not be deleted from a multi-�le CDF.

52 CHAPTER 2. CONCEPTS

2.3.13 Sparse Arrays

Sparse arrays are planned for a future release of CDF. The idea being that only those values actually written
to a variable array (record) will be physically stored. Currently, unwritten values in each variable array
are physically stored using the variable's pad value. Note that specifying a compression for a variable will
in many cases result in a disk space savings similar to that of sparse arrays. The exact di�erences in disk
space savings and execution overhead between sparse arrays and variable compression will not be known
until sparse arrays have been implemented.

2.3.14 Compression

A compression may be speci�ed for a variable in a single-�le CDF which gets performed automatically as
values are written.21 The values are transparently decompressed as they are read from the variable. The
values of a variable are compressed in blocks of one or more variable records. The blocking factor for a
compressed variable (described beginning on page 50) speci�es the number of records in each block (or the
maximum number in the case of a compressed variable with sparse records). Properly setting the blocking
factor involves a trade-o� between the compression percentage achieved and execution speed when accessing
values in individual variable records. The CDF library also uses a staging area scratch �le to minimize access
overhead for a compressed variable. Note that if a block of variable records actually increases in size when
compressed, the block of records will be stored uncompressed in the CDF. This could happen if the blocking
factor is set too low or simply because of the nature of the data and the compression algorithm being used.

The compression for a variable is speci�ed with the <PUT ,r/zVAR COMPRESSION > operation of the internal
interface. A variable's compression may be inquired with the <GET ,r/zVAR COMPRESSION > operation.
Section 2.6 describes the available compression algorithms.

Reserve Percentage.

If a value in a compressed block of records is changed, the amount of compression achieved for that block
may also change. If it increases, the block of compressed records may have to be moved in the dotCDF �le.
This will most likely result in the dotCDF �le increasing in size if the block of compressed records is placed
at the end (leaving a block of unused bytes where the compressed block of records previously existed). This
is not a desirable situation considering that the variable compression is suppose to make the CDF smaller.
To alleviate this potential problem a reserve percentage may be selected for a compressed variable. When
a compressed block of variable records is initially written to the dotCDF �le some additional space will
be allocated. This will allow that block of compressed records to expand in size if necessary. The reserve
percentage is interpreted as follows:

0 No reserve space is allocated. This is the default.

1..100 Allocates that percentage of the uncompressed size of the block of variable
records (as a minimum). For example, if a 1000-byte block of records
compressed down to 600 bytes and the reserve percentage is 70%, then 700
bytes would actually be allocated for the block in the dotCDF �le. If the
reserve percentage is 50%, then 600 bytes would of course still have to be
allocated.

21Note that variable compression is not allowed in a multi-�le CDF.

2.3. VARIABLES 53

101... Allocates that percentage of the size of the compressed block of variable
records but not exceeding the uncompressed size. For example, if a 1000-
byte block of records compressed down to 800 bytes and the reserve per-
centage is 110%, then 880 bytes would be allocated for the block.

Even specifying a reserve percentage for a compressed variable does not guarantee that the problem with
moving blocks of compressed records as the variable's values are changed will be avoided. If a CDF does
become fragmented in this way remember that the CDFconvert utility can always be used to create a new
CDF with each variable's compression being optimized (e.g., no fragmentation).

The reserve percentage for a compressed variable is selected with the <SELECT ,r/zVAR RESERVEPERCENT >

operation. A variable's reserve percentage may be con�rmed with the <CONFIRM ,r/zVAR RESERVEPERCENT >

operation.

2.3.15 Majority

The variable majority of a CDF describes how variable values within each variable array (record) are stored.
Each variable in a CDF has the same majority. The majority can be either row major or column major.

ROW MAJOR Row majority. The �rst dimension changes the slowest.

COLUMN MAJOR Column majority. The �rst dimension changes the fastest.

For example, an array for an rVariable with [VARY,VARY] dimension variances in a 2-dimensional CDF with
dimension sizes [2,4] and row majority would be stored as follows:

v(1,1), v(1,2), v(1,3), v(1,4), v(2,1), v(2,2), v(2,3), v(2,4)

where v(i,j) is the value at indices (i,j). If the CDF had column majority, the array would be stored as
follows:

v(1,1), v(2,1), v(1,2), v(2,2), v(1,3), v(2,3), v(1,4), v(2,4)

In each case v(1,1) is stored at the low address.

An application needs to be concerned with the majority of a CDF in the following cases:

1. When performing a variable hyper read, the values placed in the bu�er by the CDF library will be in
the variable majority of the CDF. The application must process the values according to that majority.

When performing a variable hyper write, the CDF library expects the values in the bu�er to be in the
variable majority of the CDF. The application must place the values into the bu�er in that majority.

2. When sequential access is used, the values are read/written in the order imposed by the variable
majority of the CDF.

54 CHAPTER 2. CONCEPTS

3. When single value reads/writes are performed, the majority could have an e�ect. The CDF library
uses a caching scheme to optimize22 the random access to variable values. If all of the values of a
record are to be read/written, there may be an increase in performance if the values are accessed with
(rather than against) the majority. For example, if the majority is row-major, increment the last index
the fastest.

4. When performing a multiple variable read/write, the full-physical records in the bu�er will/must be
in the variable majority of the CDF.

A CDF's variable majority is speci�ed when the CDF is created when using the Standard Interface but is
set to the default variable majority for your CDF distribution when created using the Internal Interface.
The majority of an existing CDF may be changed using the Internal Interface only if variable values have
not yet been written. (Variables may exist and explicit pad values may have been speci�ed, however.)

2.3.16 Single Value Access

Single value access allows only one value to be read from or written to a variable with a single call to the
CDF library. Two parameters are speci�ed when performing a single value read/write:

RecordNumber The record number at which to perform the access.

DimensionIndices The indices within the record at which to perform the access.

For 0-dimensional variables, the dimension indices are not applicable.

Single value access is sensitive to the record and dimension variances of a variable. For instance, if a variable
has a record variance of NOVARY (with one record written) and a value is read from the fourth record, the
CDF library will actually read the value from the �rst record (the record that is physically stored). If a
value were written to the fourth record, the CDF library would actually write the value to the �rst record
(the only record that actually physically exists). If the record variance is VARY, the values are written to
the actual records. (The physical records are the same as the virtual records.) The same applies to any
dimension variances that are NOVARY. When a set of indices is speci�ed for a single value read/write, the
index for a dimension whose variance is NOVARY is forced to the �rst index regardless of the actual index
speci�ed for that dimension (see Section 2.3.11).

In a C application single value access for rVariables is performed using either the CDFvarGet and CDFvarPut

functions (Standard Interface) or the <GET ,rVAR DATA > and <PUT ,rVAR DATA > operations of the CDFlib
function (Internal Interface). Single value access for zVariables must be performed using the <GET ,zVAR DATA >

and <PUT ,zVAR DATA > operations of CDFlib. In a Fortran application single value access for rVari-
ables is performed using either the CDF var get and CDF var put subroutines (Standard Interface) or the
<GET ,rVAR DATA > and <PUT ,rVAR DATA > operations of the CDF lib function (Internal Interface). Sin-
gle value access for zVariables must be performed using the <GET ,zVAR DATA > and <PUT ,zVAR DATA >

operations of CDF lib.

22Since an application knows how it will be accessing a variable, it knows best how to optimize the caching scheme used. See

Section 2.1.5 for details on how an application can control the CDF library caching scheme.

2.3. VARIABLES 55

2.3.17 Hyper Access

Hyper access allows more than one value to be read from or written to a variable with a single call to the
CDF library. In fact, the entire variable may be accessed at once (if a large enough memory bu�er is available
to your application). Hyper reads cause the CDF library to read from the variable record(s) in the CDF and
place the values into a memory bu�er provided by the application. Hyper writes cause the CDF library to
take values from a memory bu�er provided by the application and write them to the variable records in the
CDF. Six parameters are speci�ed when performing a hyper read/write:

RecordNumber The record number at which to start the access.

RecordCount The number of records to access.

RecordInterval The interval between records being accessed. An interval of two (2) would
indicate that every other record is to be accessed.

DimensionIndices The indices within each record at which the access should begin.

DimensionCounts The number of values along each dimension that should be accessed.

DimensionIntervals For each dimension, the interval between values being accessed. An interval
of three (3) would indicate that every third value is to be accessed.

For 0-dimensional variables, the dimension indices, counts, and intervals are not applicable.

A hyper access may or may not read/write a contiguous set of values stored for a variable in the CDF.
However, the values in the memory bu�er received/provided by the application are contiguous.

Hyper access is sensitive to the record and dimension variances of a variable. For instance, if a variable has
a record variance of NOVARY (with one record written) and a hyper read of the �rst �ve records for that
variable is requested, the CDF library will read the single record that is physically stored and place it �ve
times (contiguously) into the memory bu�er provided by the application. The same applies to any dimension
variances that are NOVARY. For example, if the count for a dimension is three and the dimension variance is
NOVARY, the one value (or subarray) physically stored will be read by the CDF library and placed into the
application's memory bu�er three times (contiguously).

Example (Fortran application)

Assume a 2-dimensional variable array with sizes [2,4], row majority, a record variance of VARY, dimension
variances of [VARY,VARY], and hyper read parameters as follows:

record number 5

record count 2

record interval 1

dimension indices 1,1

dimension counts 2,4

dimension intervals 1,1

The values placed in the application's bu�er would be as follows (with the �rst value being in low memory):

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)

56 CHAPTER 2. CONCEPTS

6(1,1) 6(1,2) 6(1,3) 6(1,4) 6(2,1) 6(2,2) 6(2,3) 6(2,4)

where r(i,j) is a physically stored value with r being the record number, i being the �rst dimension index,
and j being the second dimension index. (r, i, and j are physical record numbers and dimension indices.)

If the dimension variances had been [VARY,NOVARY], the values placed in the bu�er would have been

5(1,1) 5(1,1) 5(1,1) 5(1,1) 5(2,1) 5(2,1) 5(2,1) 5(2,1)

6(1,1) 6(1,1) 6(1,1) 6(1,1) 6(2,1) 6(2,1) 6(2,1) 6(2,1)

If the record count had been 3 and the record interval 2, the values placed in the bu�er would have been

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)

7(1,1) 7(1,2) 7(1,3) 7(1,4) 7(2,1) 7(2,2) 7(2,3) 7(2,4)

9(1,1) 9(1,2) 9(1,3) 9(1,4) 9(2,1) 9(2,2) 9(2,3) 9(2,4)

If the dimension counts had been [2,2] and the dimension intervals [1,2], the values placed in the bu�er
would have been

5(1,1) 5(1,3) 5(2,1) 5(2,3)

6(1,1) 6(1,3) 6(2,1) 6(2,3)

If the CDF majority had been column major, the values placed in the bu�er would have been. . .

5(1,1) 5(2,1) 5(1,2) 5(2,2) 5(1,3) 5(2,3) 5(1,4) 5(2,4)

6(1,1) 6(2,1) 6(1,2) 6(2,2) 6(1,3) 6(2,3) 6(1,4) 6(2,4)

Had these examples been for hyper writes, the CDF library would have expected to �nd the values in the
application's bu�er exactly as they were placed there during the corresponding hyper read. In the case where
the record interval was 2, the records being skipped would be written using the variable's pad value if they
did not already exist. If they did already exist, they would not be a�ected.

In a C application, hyper writes for rVariables are performed using the CDFvarHyperPut function (Standard
Interface) or the <PUT ,rVAR HYPERDATA > operation of the CDFlib function (Internal Interface). Hyper
writes for zVariables must be performed using the <PUT ,zVAR HYPERDATA > operation of CDFlib. Hy-
per reads for rVariables are performed using the CDFvarHyperGet function (Standard Interface) or the
<GET ,rVAR HYPERDATA > operation of CDFlib. Hyper reads for zVariables must be performed using the
<GET ,zVAR HYPERDATA > operation of CDFlib.

In a Fortran application, hyper writes for rVariables are performed using the CDF var hyper put subroutine
(Standard Interface) or the <PUT ,rVAR HYPERDATA > operation of the CDF lib function (Internal Interface).
Hyper writes for zVariables must be performed using the <PUT ,zVAR HYPERDATA > operation of CDF lib.
Hyper reads for rVariables are performed using the CDF var hyper get subroutine (Standard Interface) or
the <GET ,rVAR HYPERDATA > operation of CDF lib. Hyper reads for zVariables must be performed using the
<GET ,zVAR HYPERDATA > operation of CDF lib.

2.3. VARIABLES 57

2.3.18 Sequential Access

Sequential access provides a way to sequentially read/write the values physically stored for a variable. To
use sequential access, a starting value must �rst be selected by specifying a record number and dimension
indices. This selects the \current sequential value." A sequential read will return the value at the current
sequential value and then automatically increment the current sequential value to the next value. Likewise,
a sequential write will store a value at the current sequential value and then increment the current sequential
value to the next value. Sequential reads are allowed until the end of the physical records has been reached
(not the end of the virtual records [they never end]). Sequential reading will increment to the beginning of
the next physical record if necessary. Sequential writing can be used to extend the physical records for a
variable (as well as to overwrite existing values).

If the variable has sparse records, the virtual records in a gap of missing records are not skipped. The
type of sparse records (see Section 2.3.12) will determine the values returned. When a virtual record in
a gap of missing records is read, the informational status code VIRTUAL RECORD DATA is returned (rather
than END OF VARIABLE). Sequential writes will create any necessary record in a gap of missing records (i.e.,
sequential writes do not skip virtual records in a gap of missing records).

Example (Fortran application)

Assume a 2-dimensional array with sizes [2,3], column majority, a record variance of VARY, dimension
variances of [VARY,VARY], nine (9) physical records written, and that the current sequential value has been
set to record number 7 and indices [2,2]. Consecutive sequential reads would cause the following values to
be read and returned to the application:

7(2,2) 7(1,3) 7(2,3)

8(1,1) 8(2,1) 8(1,2) 8(2,2) 8(1,3) 8(2,3)

9(1,1) 9(2,1) 9(1,2) 9(2,2) 9(1,3) 9(2,3)

END_OF_VAR

. . . where r(i,j) is a physically stored value with r being the record number, i the �rst dimension index,
and j the second dimension index. (r, i, and j are physical record numbers and dimension indices.) The
next sequential read after the last physical value would cause a status code indicating the end of the variable
to be returned (END OF VAR).

Had the dimension variances been [NOVARY,VARY], the values read would have been

7(1,2) 7(1,3)

8(1,1) 8(1,2) 8(1,3)

9(1,1) 9(1,2) 9(1,3)

END_OF_VAR

Note that specifying the virtual value 7(2,2) as the current sequential value caused physical value 7(1,2)
to actually be selected (because the �rst dimension variance is NOVARY).

Sequential access for variables is performed using the <GET ,r/zVAR SEQDATA > and <PUT ,r/zVAR SEQDATA >

operations of the Internal Interface.

58 CHAPTER 2. CONCEPTS

2.3.19 Multiple Variable Access

Multiple variable access allows an application to read from or write to multiple variables in a single operation.
Multiple variable access works on either the rVariables or the zVariables of a CDF | not a mixture of the
two. Up to all of the rVariables/zVariables may be accessed with a single call to the CDF library. For each
variable speci�ed in a multiple variable access, a full-physical record for that variable will be read/written.
A full-physical record consists of all of the values exactly as they are physically stored in each variable
record (the physical values). Virtual values do not apply when performing a multiple variable access (see
Section 2.3.11). Three parameters are speci�ed when performing a multiple variable read/write.

VariableCount The number of rVariables/zVariables that are being accessed.

VariableList The rVariables/zVariables being accessed (speci�ed by number).

RecordNumbers The record numbers at which the reads/writes will take place. For rVari-
ables the record numbers must all be the same. For zVariables the record
numbers can vary (but for most applications will all be the same).

Multiple variable access is sensitive to the record variances of the variables being accessed. (Dimension
variances do not apply since full-physical records are being read/written.) If a variable has a record variance
of NOVARY, then a read/write to that variable will always occur at the �rst record regardless of the actual
record number speci�ed (since at most only one physical record will ever exist). If the record variance were
VARY, the reads/writes would take place at the actual record numbers speci�ed.

For a multiple variable write operation an application must place into a memory bu�er each of the full-
physical records to be written. The order of the full-physical records must correspond to the order of the
list of variables speci�ed, and the memory bu�er must be contiguous | there can be no gaps between the
full-physical records. This memory bu�er is then passed to the CDF library which scans through the bu�er
writing the full-physical records to the corresponding variables.

Likewise, for a multiple variable read operation the CDF library places into a memory bu�er provided by
the application the full-physical records read. The order of the full-physical records will correspond to the
order of the list of variables speci�ed and the full-physical records will be contiguous. The application must
then process the bu�er as needed.

Care must be used when generating and processing the memory bu�er containing the full-physical records. If
C struct objects or Fortran STRUCTURE variables are being used, it may be necessary to order the variables
being read/written such that there are no gaps between elements of the structures (assuming you are de�ning
structures containing one element per full-physical record where an element is a scalar variable or an array
depending on the corresponding variable de�nition). On some computers the C and Fortran compilers will
place gaps between the elements of these structures so that memory alignment errors are not generated when
the elements are accessed. In general, de�ning the structures so that \larger" data types are before \smaller"
data types should result in no gaps (e.g., the Fortran REAL*8 data type is \larger" than a INTEGER*2, which
is \larger" than a BYTE). The list of variables would be adjusted accordingly.

The variable majority must also be considered when performing a multiple variable read/write since full-
physical records are being accessed. The majority of the values in the full-physical records retrieved
from/placed into the memory bu�er must be the same as the variable majority of the CDF.

For example, consider a column-major CDF containing the following three zVariables (as well as others):

2.3. VARIABLES 59

zVariable Name Data Speci�cation Dimensionality Variances
zVar1 CDF INT2/123 0:[] T/

zVar2 CDF CHAR/7 1:[5] T/T

zVar3 CDF REAL8/1 2:[2,4] T/TT

If a Fortran application were to perform a multiple variable read on these three zVariables, it could de�ne a
STRUCTURE to receive the physical records as follows:

STRUCTURE /inputStruct/

REAL*8 zVar3values(2,4)

INTEGER*2 zVar1value

CHARACTER*7 zVar2values(5)

END STRUCTURE

Note that because a full-physical record for the zVariable zVar2 is an odd number of bytes it would most
likely cause a gap in the STRUCTURE if not placed at the end (on some computers). An approach that would
work on all computers would be to use EQUIVALENCE statements as follows:

INTEGER*2 zVar1value

CHARACTER*7 zVar2values(5)

REAL*8 zVar3values(2,4)

BYTE buffer(101)

EQUIVALENCE (zVar3values,buffer(1))

EQUIVALENCE (zVar1value,buffer(65))

EQUIVALENCE (zVar2values,buffer(67))

The EQUIVALENCE statements ensure that the full-physical records will be contiguous. In each of the above
examples, the order of the zVariables would be zVar3, zVar1, zVar2.

C applications must also be concerned with the ordering of full-physical records in the memory bu�er. Even
if a void memory bu�er is used with type casting to access individual values, the alignment of the values in
the memory bu�er is important (on some computers).

Multiple variable writes are performed using the <PUT ,r/zVARs RECDATA > operation of the Internal Inter-
face. Multiple variable reads are performed using the <GET ,r/zVARs RECDATA > operation. The selection of
record numbers is performed using the <SELECT ,r/zVARs RECNUMBER > operation.

2.3.20 Variable Pad Values

Variable pad24 values are used in several situations.

1. When the �rst value is written to a new record (for records containing multiple values), the other
values in that record will contain the pad value. This also applies to hyper writes if less than the entire
record is written. The unwritten values will contain the pad value.

23This notation is used throughout this document. The data type is before the slash and the number of elements is after the

slash. In this case the data type is (CDF INT2) and the number of elements is one (1).
24These were previously known as �ll values but were renamed to avoid confusion with the FILLVAL attribute.

60 CHAPTER 2. CONCEPTS

2. For a variable not having sparse records, when a new record is written that is more than one record
beyond the last record already written, the intervening records will also be written and will contain
pad values. This does not apply to NRV variables because only one physical record actually exists.

3. For a variable having the pad-missing style of sparse records (sRecords.PAD), if a record is read from
a gap of missing records, pad values will be returned. The previous-missing style of sparse records
(sRecords.PREV) would cause the previous existing record's values to be returned (unless there is no
previous record in which case pad values would be returned).

4. When reading a record beyond the last record written for a variable, pad values will be returned except
if the variable has the previous-missing style of sparse records. In that case, the last written record's
values are returned (unless there are no written records in which case pad values are returned).

The pad value for a variable may be speci�ed with the Internal Interface. It should be speci�ed before any
values are read from or written to the variable | otherwise the default pad value will be used. The pad value
may be changed at any time (and any number of times) and will be in e�ect for all subsequent operations.
The default pad value for each data type are shown in Table 2.8.25

Data Type Default Pad Value
CDF BYTE 0

CDF INT1 0

CDF UINT1 0

CDF INT2 0

CDF UINT2 0

CDF INT4 0

CDF UINT4 0

CDF REAL4 0.0

CDF FLOAT 0.0

CDF REAL8 0.0

CDF DOUBLE 0.0

CDF EPOCH 01-Jan-0000 00:00:00.000

CDF CHAR " " (space character)
CDF UCHAR " " (space character)

Table 2.8: Default Pad Values

Variable pad values are speci�ed using the <PUT ,r/zVAR PADVALUE > operation of the Internal Interface.
The pad value being used for a variable can be inquired with the <GET ,r/zVAR PADVALUE > operation. If a
pad value has not been explicitly speci�ed for a variable, the default pad value (based on the variable's data
type) will be returned along with the NO PADVALUE SPECIFIED informational status code. The existance of
an explicitly speci�ed pad value can be con�rmed for a variable (without actually inquiring the value) using
the <CONFIRM ,r/zVAR PADVALUE > operation.

2.4 Attributes

CDF attributes are the mechanism for storing metadata. (Variables are used to store data.) A new attribute
may be created in a CDF at any time.

25These default pad values can be changed by your system manager when the CDF distribution is built.

2.4. ATTRIBUTES 61

2.4.1 Naming

Each attribute in a CDF has a unique name. Attribute names are case sensitive regardless of the operating
system being used and may consist of up to CDF ATTR NAME LEN printable characters (including blanks).
Trailing blanks, however, are ignored when the CDF library compares attribute names. "UNITS" and
"UNITS " are considered to be the same name, so they cannot both exist in the same CDF. This was done
because Version 1 of CDF padded attribute names on the right with blanks out to eight characters. When
a Version 1 CDF was converted to a Version 2 CDF these trailing blanks remained in the attributes names.
To allow CDF Version 2 applications to read such a CDF without having to be concerned with the trailing
blanks, the trailing blanks are ignored by the CDF when comparing attributes names. The trailing blanks
are returned as part of the name, however, when an attribute is inquired by an application program.

2.4.2 Numbering

The attributes in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting
at zero (0) for C applications. The CDF library assigns attribute numbers as the attributes are created.
Note that there are not separate lists of global and variable scoped attributes. Only one list of attributes
exists in a CDF (containing both global and variable scoped attributes).

2.4.3 Attribute Scopes

Attribute scopes declare the intended purpose of an attribute. Global scope attributes (gAttributes) describe
some aspect of the entire CDF. Variable scope attributes (vAttributes) describe some property of each
variable.

An attribute's scope exists to assist in the interpretation of its entries by CDF toolkit programs and user
applications (e.g., entries of a vAttribute should correspond to variables). The CDF library also places
some restrictions on the operations that may be performed on an attribute of a particular scope.26 These
restrictions consist of the following:

1. A gEntry operation may not be performed on a vAttribute.
2. A zEntry or rEntry operation may not be performed on a gAttribute.
3. While in zMode, only zEntry operations may be performed on vAttributes (see Section 2.1.2).

All other operations involving attributes and their entries remain available.

Assumed Scopes

CDF Version 1 did not allow the scope of an attribute to be explicitly declared. This led to ambiguities in the
interpretation of attribute entries in the toolkit programs and user applications. CDF Version 2 does allow
the scope of an attribute to be declared when the attribute is created. To ease the transition from Version
1 to Version 2, CDF distributions prior to CDF V2.5 contained the notion of assumed attribute scopes.
Assumed attribute scopes arose when the CDF library had to guess the scope of an attribute in a Version 1
CDF (e.g., when the CDFconvert program converted a Version 1 CDF to a Version 2 CDF). Beginning with

26This was not necessarily the case in previous releases of CDF. These new restrictions should not, however, cause any

conicts with existing applications.

62 CHAPTER 2. CONCEPTS

CDF V2.5, all assumed attribute scopes are converted to the corresponding de�nite scope. When a CDF is
read this conversion occurs only in the CDF library | the CDF is not physically altered. When an existing
CDF is written to, each assumed attribute scope detected will be physically converted to the corresponding
de�nite scope. Note that if this automatic conversion is incorrect, the scope of an attribute can be corrected
using the Internal Interface in an application program or by editing the CDF with the CDFedit program.

2.4.4 Deleting

An attribute may be deleted from a CDF. Deleting an attribute also deletes the corresponding entries. The
disk space used by the attribute de�nition and the corresponding entries becomes available for use as needed
by the CDF library. Also, the attributes which numerically follow the attribute being deleted are renumbered
immediately. (Each is decremented by one.) Attributes are deleted using the <DELETE ,ATTR > operation of
the Internal Interface.

2.4.5 Attribute Entries

Attribute entries are used to actually store metadata. Each attribute in a CDF may have zero or more asso-
ciated entries. For vAttributes two types of entries are supported: rEntries and zEntries. rEntries describe
some property of the corresponding rVariable, and zEntries describe some property of the corresponding
zVariable. Note that an entry does not have to exist for each variable in the CDF. For gAttributes only one
type of entry is supported and is referred to as a gEntry. The gEntries are independent of anything else in
the CDF and have meaning only to the application. Note that gEntries are sometimes referred to simply as
\entries."

Accessing

The Standard Interface deals exclusively with rEntries (for vAttributes) and gEntries (for gAttributes). No
access to zEntries is provided. The Internal Interface may be used to access any type of attribute entry.

Numbering

The rEntries and zEntries for a vAttribute and the gEntries for a gAttribute are numbered starting at one (1)
for Fortran applications and starting at zero (0) for C applications. For vAttributes the entry numbers are
in fact the variable numbers of the variables being described. rEntries correspond to rVariables and zEntries
correspond to zVariables. For gAttributes the gEntry numbers have meaning only to the application.

The entry numbers used need not be contiguous (as are variable and attribute numbers). An application
may choose to write any combination of entries for a particular attribute (keeping in mind that the entry
numbers used for a vAttribute correspond to the existing variables).

2.5. DATA TYPES 63

Data Speci�cation

Each entry for an attribute has a data speci�cation and an associated value. A data speci�cation consists
of a data type and a number of elements of that data type. The supported data types are described in
Section 2.5. The entries for an attribute may have any combination of data speci�cations.

For character data types the number of elements is the number of characters in the string. For example, if a
gEntry value for a gAttribute named TITLE were "Example CDF Title." (not including the double quotes),
the data type would be CDF CHAR, and the number of elements would be 18 (a character string of size 18).

For non-character data types the number of elements is the size of an array of the data type. For example, if
a zEntry value of a vAttribute named RANGE were [100.0,900.0], the data type would be CDF REAL4, and
the number of elements would be two (an array of two values).

Deleting

An entry may be deleted from an attribute. The disk space used by the entry becomes available for use as
needed by the CDF library. There is no renumbering of entries (as with deleting a variable or attribute).
Entries are deleted using the <DELETE ,gENTRY >, <DELETE ,rENTRY >, and <DELETE ,zENTRY > operations
of the Internal Interface.

2.5 Data Types

CDF supports a variety of data types consistent with the types available with C and Fortran compilers on
most computers. All data types are based on an 8-bit byte. The size of an element of a data type is the
same regardless of the computer/operating system being used. The <GET ,DATATYPE SIZE > operation of
the Internal Interface may be used to inquire the size in bytes of a particular data type.

2.5.1 Integer Data Types

CDF BYTE 1-byte, signed integer.

CDF INT1 1-byte, signed integer.

CDF UINT1 1-byte, unsigned integer.

CDF INT2 2-byte, signed integer.

CDF UINT2 2-byte, unsigned integer.

CDF INT4 4-byte, signed integer.

CDF UINT4 4-byte, unsigned integer.

NOTE: When using C on a DEC Alpha running OSF/1, keep in mind that a long is 8 bytes and that an
int is 4 bytes. Use an int with the data types CDF INT4 and CDF UINT4 rather than a long.

64 CHAPTER 2. CONCEPTS

NOTE: When using C on a PC under MS-DOS, keep in mind that an int is most likely 2 bytes and that
a long is 4 bytes. Use a long with the data types CDF INT4 and CDF UINT4 rather than an int.

2.5.2 Floating Point Data Types

CDF REAL4 & CDF FLOAT 4-byte, single-precision oating-point.

CDF REAL8 & CDF DOUBLE 8-byte, double-precision oating-point.

A special case exists with respect to the value -0.0 (negative oating-point zero). This value is legal on
those computers that use the IEEE 754 oating-point representation (e.g., most UNIX-based computers and
the PC) but is illegal on VAXes and DEC Alphas running OpenVMS. Attempting to use -0.0 will result
in a reserved operand fault on a VAX and a high performance arithmetic fault on a DEC Alpha running
OpenVMS. A warning is returned whenever -0.0 is read by an application on a VAX or DEC Alpha running
OpenVMS. The CDF library can be put into a mode where -0.0 will be converted to 0.0 when detected
(see Section 2.1.2). If -0.0 is not being converted to 0.0, the CDF toolkit programs are designed to display
-0.0 in all cases. This includes those computers that normally suppress the negative sign.

2.5.3 Character Data Types

CDF CHAR 1-byte, character.

CDF UCHAR 1-byte, unsigned character.

Character data types are unique for variables in that they are the only data types for which more than one
element per value is allowed. Each variable value consists of a character string with the number of elements
being the number of characters. More than one element is allowed for any of the data types when dealing
with attribute entries.

2.5.4 EPOCH Data Type

CDF EPOCH 8-byte, double precision oating point.

The CDF EPOCH data type is used to store time values referenced from a particular epoch. For NSSDC
applications that epoch is 01-Jan-0000 00:00:00.000.27 CDF EPOCH values are the number of milliseconds
since the epoch. The standard format used to display a CDF EPOCH value is. . .

dd-mmm-yyyy hh:mm:ss.ccc

where dd is the day of the month (01-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, or Dec), yyyy is the year (0000-9999) hh is the hour (00-23), mm is the minute (00-59), ss is the
second (00-59), and ccc is the millisecond (000-999).

27I know what you're thinking. The year 0 AD never existed. If it makes you feel better, think of the epoch year as 1 BC (or

simply year 0) rather than 0 AD. Also, year 0 is considered to be a leap year.

2.6. COMPRESSION ALGORITHMS 65

Functions exist that parse, encode, compute, and decompose CDF EPOCH values. These functions are described
in the CDF C Reference Manual for C applications and in the CDF Fortran Reference Manual for Fortran
applications.

2.5.5 Equivalent Data Types

Certain data types are considered equivalent with respect to their representation in memory and in a CDF.
Table 2.9 shows the groups of equivalent data types.

CDF CHAR CDF INT2 CDF INT4 CDF REAL4 CDF REAL8

CDF UCHAR CDF UINT2 CDF UINT4 CDF FLOAT CDF DOUBLE

CDF INT1 CDF EPOCH

CDF UINT1

CDF BYTE

Table 2.9: Equivalent Data Types

Note that while the signed and unsigned forms of a data type are considered equivalent by the CDF library,
they must be correctly interpreted by an application to produce the desired results.

2.6 Compression Algorithms

Several compression algorithms are supported by the CDF library. Selecting the proper algorithm to use will
depend on the characteristics of the data being compressed. Experimentation with the available algorithms
on the CDF or variable being compressed will also be necessary. The following sections describe each
compression algorithm, any associated parameters, and the types of data for which they are appropriate.

2.6.1 Run-Length Encoding

The run-length encoding compression algorithm, RLE COMPRESSION, takes advantage of repeating bytes in
the data. Currently, only the run-length encoding of zeros (0's) is supported. RLE COMPRESSION has one
parameter which must be set to RLE OF ZEROs. The notation RLE.0 is used for this type of RLE compression.

2.6.2 Hu�man

The Hu�man compression algorithm, HUFF COMPRESSION, takes advantage of the frequency at which certain
byte values occur in the data. A sequence of bytes that contain a high percentage of a limited number of
byte values will compress better than if each byte value occurs with equal probability. HUFF COMPRESSION

has one parameter which must be set to OPTIMAL ENCODING TREES.28 The notation HUFF.0 is used for this
type of HUFF compression.

28OPTIMAL ENCODING TREES causes each bu�er of data to be scanned for the best possible compression. An alternative method

would be to scan the �rst bu�er being compressed and then use the same byte value frequencies for subsequent bu�ers.

66 CHAPTER 2. CONCEPTS

2.6.3 Adaptive Hu�man

The adaptive Hu�man compression algorithm, AHUFF COMPRESSION, also takes advantage of the frequency
at which certain byte values occur in the data. AHUFF COMPRESSION is very similar to HUFF COMPRESSION

and generally provides slightly better compression. AHUFF COMPRESSION has one parameter which must be
set to OPTIMAL ENCODING TREES.28 The notation AHUFF.0 is used for this type of AHUFF compression.

2.6.4 GZIP

The Gnu ZIP compression algorithm, GZIP COMPRESSION, uses the Lempel-Ziv coding (LZ77) taking advan-
tage of common substrings within the data. Signi�cant compression occurs over a wide variety of data sets.
GZIP COMPRESSION has one parameter which may be set to a level value in the range from 1 (one) to 9 (nine).
1 provides the least amount of compression and executes the fastest. 9 provides the most compression but
executes the slowest. Levels between 1 and 9 allow for a trade-o� between compression and execution speed.
The notation GZIP.<level> is used for GZIP compression where <level> is a value from 1 to 9. For example,
GZIP.7 speci�es a level of 7.

Note: GZIP compression is disabled for PCs running 16-bit DOS/Windows 3.x due to their memory con-
straint.

Chapter 3

Toolkit Reference

3.1 Introduction

The CDF toolkit is a set of utility programs that allow the creation, analysis, and modi�cation of CDFs.
The following sections will describe the use of these programs.

3.1.1 VMS, UNIX, & MS-DOS

Each program is executed at the command line (or may be executed from within your applications using
the methods provided by the operating system being used). The following rules apply to the command line
syntax:

1. Parameters are required unless noted otherwise. Parameters are shown in angle brackets (<>'s) in the
sections which describe each toolkit program.

2. Quali�ers are optional unless noted otherwise.

3. Quali�ers can be truncated as long as no ambiguities result.

4. Optional parts of a command are shown in brackets ([]'s) in the sections which describe each toolkit
program.

5. A vertical line (|) is used to separate two or more options in those cases when only one of the options
may be speci�ed.

6. Wildcard characters are allowed in CDF names to allow more than one CDF to be speci�ed (where
appropriate). Wildcard characters may be used in the CDF name but not the directory path portion
of a speci�cation. The wildcard characters supported are similar to those available on the operating
system being used.

UNIX: If a CDF speci�cation is to contain a wildcard character, the entire speci�cation must be
enclosed in single quote marks (e.g., '/disk3/sst*').

67

68 CHAPTER 3. TOOLKIT REFERENCE

7. On VMS/OpenVMS systems, quali�ers begin with a slash (/). On UNIX and MS-DOS systems,
quali�ers begin with a hyphen (-).

NOTE: You can override the default notation by specifying a slash or hyphen as the �rst parame-
ter/quali�er immediately after the program name. When this is done, you may have to adjust the
syntax used as follows:

(a) When the slash notation is used on UNIX systems, character stu�ng will be necessary in path-
names (e.g., specify \//disk1//CDFs" rather than \/dist1/CDFs"). Also, double quote marks
are required around options enclosed in parenthesis.

(b) When the slash notation is used on MS-DOS systems, double quote marks may be needed around
entire quali�er/option combinations.

8. On MS-DOS systems the executable names may be di�erent from the names shown in this chapter
(�le names are limited to 8.3 characters). Where the names di�er, the actual name will be noted.

If you add the directory containing the toolkit executables to your path, you will have to use the
8-character (or fewer) names. If you use a command aliasing program, you could specify the aliases to
be the names shown in this chapter with each pointing to the corresponding executable �le name.

9. On UNIX systems all parameters/quali�ers entered at the command line are case sensitive. On VMS,
OpenVMS, and MS-DOS systems parameters/quali�ers are not case sensitive. Note that variable
names are always case sensitive regardless of the operating system being used.

10. If an option contains blanks, it will generally be necessary to enclose the entire option in double quote
marks.

11. On UNIX systems, it may be necessary to execute \stty tab3" before running CDFedit or CDFexport.

12. Some of the toolkit programs have a \paging" quali�er. Paging is not allowed if the output of the
program has been directed to a �le.

13. Most toolkit programs have an \about" quali�er that can be used to determine the CDF distribution
from which the program came. On the Macintosh, an \about" selection is available on the \apple"
pull-down menu.

In the following sections the available quali�ers and options for each of the toolkit programs will be presented.
The default settings for these quali�ers and options will not be shown since they can be con�gured for a
particular CDF distribution. Use CDFinquire to determine these defaults.

On VMS/OpenVMS systems you should have executed the command procedure named DEFINITIONS.COM

before running any of the CDF toolkit programs. This will de�ne the necessary logical names and symbols.
Your system administrator knows the location of DEFINITIONS.COM.

On UNIX systems you should have source'd (or equivalent) the script �le named definitions.<shell-type>
where <shell-type> is the type of shell you are using: C for the C-shell (csh) and tcsh, K for the Korn
(ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This will de�ne the necessary environment
variables and aliases. Your system administrator knows the location of definitions.<shell-type>.

3.1.2 Macintosh

Each toolkit program is started by double-clicking on the appropriate icon. A dialog box will be displayed
in which the parameters and quali�ers needed to execute the program are speci�ed. When the parame-
ters/quali�ers have been selected, clicking on Enter causes the initial execution to begin.

3.1. INTRODUCTION 69

For the programs that use a full-screen interface (e.g., CDFedit and CDFexport), a \pasteboard" window is
opened in which the program displays menus, prompts, etc. When the \pasteboard" window is closed (by
exiting the execution), the parameters/quali�ers dialog box is redisplayed. A new set of parameters/quali�ers
may be selected and executed or the program may be terminated.

For the programs that simply output to the screen (e.g., CDFstats, CDFcompare, and CDFinquire), a
\standard output" window is opened in which the output will be written. When the execution completes,
the \apple" and File menus are available in the menu bar. Under the File menu the following commands
are available:

Execute Causes the parameters/quali�ers dialog box to be redisplayed. A new set of
parameters/quali�ers may be selected and executed. The output from each
execution is appended to the existing output.

Save Saves the current output to a �le named <program-name>.sowhere <program-name>
is the name of the program.

Save as... Saves the current output to the �le speci�ed in the standard output �le dialog
box that will be displayed.

Clear Clears the current output.

Quit Terminates the program.

The vertical scroll bar as well as the page up and page down keys may be used to scroll through the output.
When a large amount of text has been written, a dialog box may be displayed indicating that an output
overow is about to occur. The output may be saved to a �le before being cleared (to allow the execution
to continue).

The parameters/quali�ers dialog box for each program uses the standard Macintosh controls. Edit �elds are
used to enter text values (e.g., the pathname of a CDF). Leaving an edit �eld blank is allowed in some cases
(which will be noted). Check boxes are used to enable or disable a quali�er. An X in the check box indicates
that the quali�er is enabled. Radio buttons are used in groups to allow one of several options to be chosen
for a quali�er. Generally, only one of the radio buttons in a group may be selected.

Several types of �les are speci�ed to the toolkit programs. These consist of CDFs, skeleton tables, and
output �les. In a parameters/quali�ers dialog box edit �eld or a toolkit program's prompt �eld a �le must
be speci�ed using a full or partial pathname. Full pathnames consist of a volume name (which is also
the corresponding folder name), zero or more folder names, and �nally the �le name (with or without an
extension). These are all separated by semi-colons (:'s). Partial pathnames do not start with a volume
name and may start with or without a semi-colon. If a partial pathname starts with a semi-colon, one or
more folder names will follow, each separated by a semi-colon, followed by the �le name. The �rst folder
must exist in the currently selected folder. If a partial pathname starts without a semi-colon, then only a
�le name should be present and the �le is (or will be) located in the currently selected folder. To ease in
the selection of �les in parameters/quali�ers dialog boxes, the corresponding edit �elds are followed by a
Select button. When clicked on, a standard input/output �le dialog will be displayed in which a �le may
be speci�ed. When that has been done the pathname of the selected �le will appear in the edit �eld.

A directory/wildcard1 speci�cation is allowed for some of the CDF speci�cations required by the toolkit
programs. This allows more than one of the CDFs in a directory to be selected. If a CDF speci�cation ends

1Macintosh folders are equivalent to the directories discussed here.

70 CHAPTER 3. TOOLKIT REFERENCE

with a folder name, then all of the CDFs in that folder will have been speci�ed. A trailing semi-colon is not
required (but may be present). The supported wildcard characters are the asterick (*) which matches zero
or more characters and the question mark (?) which matches exactly one character.

In the following sections the available quali�ers and options for each of the toolkit programs will be presented.
The default settings for these quali�ers and options will not be shown since they can be con�gured for a par-
ticular CDF distribution. When a program is started, the settings shown in the initial parameters/quali�ers
dialog box are the default quali�ers for your CDF distribution.

NOTE: You may �nd it necessary to increase the partition size available to a toolkit program when dealing
with very large CDFs. You can do this by editing the \current size" �eld of the window opened when using
the Get Info item of the File menu (from the Desktop menu bar) on the toolkit executable.

3.1.3 Special Attributes

There is a set of vAttributes that have special meaning to some of the CDF toolkit programs.2 Your CDFs
do not have to use these special attributes. The CDF toolkit programs will function properly whether
or not these special attributes are present in a CDF. How the entries of each vAttribute are used for the
corresponding variables is as follows:

FORMAT A Fortran or C format speci�cation that is used when displaying a variable
value.

VALIDMIN The minimum valid value for a variable.

VALIDMAX The maximum valid value for a variable.

FILLVAL The value used for missing or invalid variable values.3

MONOTON The monotonicity of a variable: INCREASE (strictly increasing values), DECREASE
(strictly decreasing values), or FALSE (not monotonic). Monotonicity only ap-
plies to NRV variables that vary along one dimension and RV variables that
vary along no dimensions.

SCALEMIN The minimum value for scaling a variable when graphically displaying its values.

SCALEMAX The maximum value for scaling a variable when graphically displaying its values.

In the description of each CDF toolkit program, the special attributes that may a�ect that program's
operation are de�ned. Note that most of the CDF toolkit programs can be instructed to ignore these special
attributes.

3.1.4 Special Quali�er

There is a special quali�er applied to all toolkit programs. This quali�er, as "-about" on all platforms
except Macintosh, will show version, release and increment information of the distribution that the toolkit

2These special attributes originated as part of the NSSDC standard for CDFs. The NSSDC standard is no longer used.
3Note that the FILLVAL attribute is not the same as the pad value for a variable although their values will often be the same.

The pad value is used by the CDF library. The FILLVAL attribute is optionally used by a CDF toolkit program or by your

applications.

3.2. CDFEDIT 71

program is based on. This special quali�er, if present, supersedes all other quali�ers and parameters.

3.2 CDFedit

3.2.1 Introduction

The CDFedit program allows the display and/or modi�cation of practically all of the contents of a CDF by
way of a full-screen interface. It is also possible to run CDFedit in a browse-only mode in order to prevent
accidental modi�cations.4

3.2.2 Special Attribute Usage

The special attribute FORMAT is used by CDFedit (depending on the setting of the \format" quali�er) when
displaying variable values.

3.2.3 Executing the CDFedit Program

Usage:

VMS:

$ CDFEDIT [/[NO]BROWSE] [/ZMODE=<mode>] [/[NO]FORMAT] [/[NO]PROMPT]

[/[NO]NEG2POSFP0] [/REPORT=(<types>)] [/CACHE=(<sizes>)]

[/[NO]STATISTICS] [/[NO]GWITHENTRIES] [/[NO]VWITHENTRIES]

<cdf-spec>

UNIX:

% cdfedit [-[no]browse] [-zmode <mode>] [-[no]format] [-[no]prompt]

[-[no]neg2posfp0] [-report "<types>"] [-cache "<sizes>"]

[-[no]statistics] [-[no]gwithentries] [-[no]vwithentries]

<cdf-spec>

MS-DOS:

> cdfedit [-[no]browse] [-zmode <mode>] [-[no]format] [-[no]prompt]

[-[no]neg2posfp0] [-report "<types>"] [-cache "<sizes>"]

[-[no]statistics] [-[no]gwithentries] [-[no]vwithentries]

<cdf-spec>

4Running CDFedit in a browse-only mode provides the same functionality as CDFbrowse once did.

72 CHAPTER 3. TOOLKIT REFERENCE

Macintosh:

Double-click on the CDFedit icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to begin editing the CDF(s). Clicking on the Help
button will display online help. Clicking on the Quit button terminates CDFedit.

Parameter(s):

<cdf-spec> (VMS, UNIX, & MS-DOS)
CDF edit �eld (Macintosh)

The speci�cation of the CDF(s) to edit. (Do not specify an extension.) This may be either a
single CDF pathname or a directory/wildcard path. Wildcards are allowed in the CDF name
but not in the directory path. If the \prompt" quali�er is used, this will appear as the initial
speci�cation at the prompt. If this parameter is omitted, the \prompt" quali�er must be speci�ed
(and the initial speci�cation at the prompt will be the default/current directory).

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which a single CDF may be selected. Also present
is a button labeled New. When selected, a standard output �le dialog is displayed in which a
single CDF may be speci�ed.

Quali�er(s):

/[NO]BROWSE (VMS)
-[no]browse (UNIX & MS-DOS)
Browse only check box (Macintosh)

Speci�es whether or not a browsing mode is desired. In browsing mode the creation, modi�ca-
tion, or deletion of a CDF is not allowed.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es which zMode should be used. The zMode may be one of the following:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

/[NO]FORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh)

Speci�es whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/[NO]PROMPT (VMS)

3.2. CDFEDIT 73

-[no]prompt (UNIX & MS-DOS)
Prompt for CDF check box (Macintosh)

Speci�es whether or not a prompt is issued for the CDF(s) speci�cation. When enabled the
prompt will be issued both at program startup and after editing the current CDF(s) speci�cation
(at which point a new CDF[s] speci�cation may be speci�ed).

VMS, UNIX, & MS-DOS: If a CDF(s) speci�cation was entered on the command line, that
CDF(s) speci�cation will appear at the prompt. (Otherwise, the current/default directory will
appear at the prompt.)

Macintosh: If a CDF(s) speci�cation was entered in the CDF edit �eld, that CDF(s) speci�cation
will appear at the prompt. (Otherwise, the current directory will appear at the prompt.)

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)
Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

/[NO]GWITHENTRIES (VMS)
-[no]gwithentries (UNIX & MS-DOS)
gEntries with gAttributes check box (Macintosh)

Speci�es whether or not gEntries are displayed with the gAttributes or on separate menus (with
one menu per gAttribute).

/[NO]VWITHENTRIES (VMS)

74 CHAPTER 3. TOOLKIT REFERENCE

-[no]vwithentries (UNIX & MS-DOS)
rEntries/zEntries with vAttributes check box (Macintosh)

Speci�es whether or not rEntries/zEntries are displayed with the vAttributes or on separate
menus (with one menu per vAttribute).

Example(s):

VMS:

$ CDFEDIT [.SAMPLES]

$ CDFEDIT/ZMODE=2/NOFORMAT/CACHE=(10D,100S,200C) GISS_WETLX

$ CDFEDIT/BROWSE/PROMPT/REPORT=(ERRORS)

UNIX:

% cdfedit samples

% cdfedit -zmode 2 -noformat -cache "10d,100s,200c" giss_wetl

% cdfedit -browse -prompt -report "errors"

MS-DOS:

> cdfedit samples

> cdfedit -zmode 2 -noformat -cache "10d,100s,200c" giss_wetl

> cdfedit -browse -prompt -report "errors"

3.2.4 Interaction with CDFedit

Interaction with CDFedit is through a series of menus and windows. Extensive online help is provided and
will not be repeated here.5 The online help does refer to the sections of a window by name. Figure 3.1
illustrates the various sections of the possible types of windows.

ItemWindows are used when a choice is to be made from a list of one or more items (e.g., functions to
perform, CDFs to edit, variable names, etc.). In some cases the entire list of items may not �t on the screen
at once. When this occurs, the ItemSection may be scrolled to display hidden items. Some ItemWindows
have a percentage indicator at the bottom right portion of the ItemSection. The percentage indicator shows
which part of the ItemSection is being displayed.

PromptWindows are used when a textual response is required (e.g., a CDF speci�cation, a new attribute
name, a variable value, etc.). If the text is too long to �t into the PromptField, the \more" indicators (\<"
and \>") at the left and right ends of the PromptField will display where hidden characters exist.

EditWindows are used to display/edit a text �le or group of lines. EditWindows are currently used to display
online help and to edit gAttribute character string entries as if they were a text �le.

5It is our intention that the use of CDFedit be as intuitive as possible. You may not even need the online help. We're sure

you'll let us know.

3.3. CDFEXPORT 75

ItemWindow

Label

HeaderSection

ItemSection

TrailerSection

PromptWindow

Label

HeaderSection

PromptField

TrailerSection

EditWindow

Label

HeaderSection

EditSection

TrailerSection

Figure 3.1: Window Sections, CDFedit

3.3 CDFexport

3.3.1 Introduction

CDFexport allows the contents of a CDF to be exported to the terminal screen, a text �le, or another CDF.
The variables to be exported can be selected along with a �lter range for each variable which allows a subset
of the CDF to be generated. When exporting to another CDF, a new compression and sparseness can be
speci�ed for each variable. When exporting to the terminal screen or a text �le, the format of the output
can be tailored as necessary.

3.3.2 Special Attribute Usage

CDFexport uses the following special attributes:

FORMAT Used as the initial value in a variable's Format �eld.

VALIDMIN Used as the initial �lter value in a variable's Minimum �eld.

VALIDMAX Used as the initial �lter value in a variable's Maximum �eld.

FILLVAL Used as the initial value in a variable's FillValue �eld.

MONOTON Used as the initial setting in a variable's Monotonicity �eld.

These �elds are described in the online help for the appropriate menu. The values of these �elds can be
changed at any time. The special attributes are simply used to provide initial values. Note also that the
usage of these special attributes can be controlled by the options selected with the \initial" quali�er.

3.3.3 Executing the CDFexport Program

Usage:

VMS:

76 CHAPTER 3. TOOLKIT REFERENCE

$ CDFEXPORT [/INITIAL=(<options>)] [/[NO]PROMPT] [/ZMODE=<mode>]

[/REPORT=(<types>)] [/[NO]STATISTICS] [/[NO]NEG2POSFP0]

[/CACHE=(<sizes>)] [/[NO]SIMPLE] [/BATCH=<mode>]

[/CDF=<path>] [/TEXT=<path>] [/SETTINGS=<path>] <cdf-spec>

UNIX:

% cdfexport [-initial "<options>"] [-[no]prompt] [-zmode <mode>]

[-report "<types>"] [-[no]statistics] [-[no]neg2posfp0]

[-cache "<sizes>"] [-[no]simple] [-batch <mode>]

[-cdf <path>] [-text <path>] [-settings <path>] <cdf-spec>

MS-DOS:6

> cdfexport [-initial "<options>"] [-[no]prompt] [-zmode <mode>]

[-report "<types>"] [-[no]statistics] [-[no]neg2posfp0]

[-cache "<sizes>"] [-[no]simple] [-batch <mode>]

[-cdf <path>] [-text <path>] [-settings <path>] <cdf-spec>

Macintosh:

Double-click on the CDFexport icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to begin exporting from the CDF(s). Clicking on the Help
button will display online help. Clicking on the Quit button terminates CDFexport.

Parameter(s):

<cdf-spec> (VMS, UNIX, & MS-DOS)
CDF edit �eld (Macintosh)

The speci�cation of the CDF(s) from which to export. Do not specify an extension. This may
be either a single CDF pathname or a directory/wildcard path. Wildcards are allowed in the
CDF name but not in the directory path.

VMS, UNIX, & MS-DOS: If the \prompt" quali�er is used, this will appear as the initial
speci�cation. If this parameter is omitted, the \prompt" quali�er must be speci�ed and the
initial speci�cation will be the current directory.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which a single CDF may be selected.

Quali�er(s):

/[NO]PROMPT (VMS)
-[no]prompt (UNIX & MS-DOS)

6On MS-DOS systems the executable is named CDFXP.EXE.

3.3. CDFEXPORT 77

Not applicable. (Macintosh)

Speci�es whether or not a prompt is issued for the CDF(s) speci�cation. If this quali�er is not
speci�ed, the CDF(s) speci�cation must be entered on the command line and is automatically
opened.

VMS, UNIX, & MS-DOS: If a CDF(s) speci�cation was entered on the command line, that
CDF(s) speci�cation will initially appear at the prompt. Otherwise, the current directory will
appear at the prompt.

Macintosh: This quali�er is not applicable on the Macintosh. The CDF(s) speci�cation must
always be entered in the dialog box and is then automatically opened.

/INITIAL=(<defaults>) (VMS)
-initial "<defaults>" (UNIX & MS-DOS)
Initial options check boxes, see below (Macintosh)

The default settings that are initially in a�ect when a CDF is opened. These setting are only
the settings initially in e�ect. The user may change any of them at any time. More detailed
descriptions of each option may be found in the appropriate sections that follow.

VMS, UNIX, & MS-DOS: <defaults> is a comma-separated list of settings consisting of
one or more of the options in the list that follows. Macintosh: The initial settings are selected
using the check boxes described in the list that follows.

[NO]FILTER (VMS)
[no]filter (UNIX & MS-DOS)
Filters enabled check box (Macintosh)

Whether or not each item/variable is initially �ltered.

[NO]FILLS (VMS)
[no]fills (UNIX & MS-DOS)
Use fills check box (Macintosh)

Whether or not the use of �ll values is enabled.

[NO]FORMAT (VMS)
[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh)

Speci�es whether or not a variable's FORMAT attribute entry is used as its initial
\format" �eld.

[NO]FILLVAL (VMS)
[no]fillval (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh)

Speci�es whether or not a variable's FILLVAL attribute entry is used as its initial
\�ll value" �eld.

[NO]VALIDMIN (VMS)
[no]validmin (UNIX & MS-DOS)
Use VALIDMIN check box (Macintosh)

Speci�es whether or not a variable's VALIDMIN attribute entry is used as its initial
minimum �lter value.

[NO]VALIDMAX (VMS)

78 CHAPTER 3. TOOLKIT REFERENCE

[no]validmax (UNIX & MS-DOS)
Use VALIDMAX check box (Macintosh)

Speci�es whether or not a variable's VALIDMAX attribute entry is used as its initial
maximum �lter value.

[NO]MONOTON (VMS)
[no]monoton (UNIX & MS-DOS)
Use MONOTON check box (Macintosh)

Speci�es whether or not a variable's MONOTON attribute entry is used as its initial
monotonicity.

[NO]RECORD (VMS)
[no]record (UNIX & MS-DOS)
Show `Record' check box (Macintosh)

Speci�es whether or not the Record item will be present.

[NO]INDICES (VMS)
[no]indices (UNIX & MS-DOS)
Show `Indices' check box (Macintosh)

Speci�es whether or not the Indices item will be present.

[NO]EXCLUSIVE (VMS)
[no]exclusive (UNIX & MS-DOS)
Exclusive filters check box (Macintosh)

Speci�es whether or not exclusive �lters are allowed.

[NO]OUTPUT (VMS)
[no]output (UNIX & MS-DOS)
Outputs enabled check box (Macintosh)

Speci�es whether or not each item/variable is initially output.

[NO]DELETE (VMS)
[no]delete (UNIX & MS-DOS)
Delete existing CDF check box (Macintosh)

Speci�es the initial setting of whether or not an existing CDF will be deleted when
a new CDF is created with the same name.

[NO]PREALLOCATE (VMS)
[no]preallocate (UNIX & MS-DOS)
Preallocate records check box (Macintosh)

Speci�es the initial setting of whether or not variable records are to be preallocated
when creating a new CDF.

SINGLE or MULTI (VMS)
single or multi (UNIX & MS-DOS)
New format radio buttons (Macintosh)

Speci�es the initial setting of whether single-�le or multi-�le CDFs are created.

HOST or NETWORK (VMS)
host or network (UNIX & MS-DOS)
New encoding radio buttons (Macintosh)

3.3. CDFEXPORT 79

Speci�es the initial setting of whether host-encoded or network-encoded CDFs are
created.

ROW or COLUMN (VMS)
row or column (UNIX & MS-DOS)
Majority radio buttons (Macintosh)

Speci�es the initial setting of whether row-major, column-major, or input-major
CDFs/listings are generated. Input-majority is the majority of the input CDF.
VMS, UNIX, & MS-DOS: Input-majority is selected by specifying neither row-
majority nor column-majority.

EPOCH, EPOCH1, EPOCH2, EPOCH3, EPOCHf, or EPOCHx (VMS)
epoch, epoch1, epoch2, epoch3, epochf, or epochx (UNIX & MS-DOS)
EPOCH style radio buttons (Macintosh)

Speci�es the initial EPOCH encoding style.

HORIZONTAL or VERTICAL (VMS)
horizontal or vertical (UNIX & MS-DOS)
Orientation radio buttons (Macintosh)

Speci�es the initial setting of whether horizontal or vertical listings are generated.

Note that these options can be changed at any time after the CDF has been opened. If this
quali�er is not speci�ed, each of these options has a default setting. These default settings are
also used for options not speci�ed with this quali�er.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es which zMode should be used. The zMode may be one of the following:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)

80 CHAPTER 3. TOOLKIT REFERENCE

-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)
Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

/[NO]SIMPLE (VMS)
-[no]simple (UNIX & MS-DOS)
Not applicable. (Macintosh)

Speci�es if a simpli�ed version of CDFexport should be executed. The following conditions
apply to simple mode:

- Only text listings can be generated (to the screen or a �le).

- No �ltering is available.

- When listing to a text �le, FORMAT attribute entries are ignored and standard
formats are used instead.

- Only a limited set of the options for the `initial' quali�er may be speci�ed.

- zMode/2 is used by default.

- Horizontal listings are created by default.

/BATCH=<mode> (VMS)
-batch <mode> (UNIX & MS-DOS)
Not applicable. (Macintosh)

Speci�es if CDFexport should execute in a non-interactive batch mode. The mode option may
be either "text" to generate a text �le listing or "cdf" to output to a new CDF. A settings �le
will be used if one exists with the default name in the current directory or is explicitly speci�ed
with the `settings' quali�er. The settings �le contains the parameters necessary to specify how
the output CDF or text �le should be generated. If a settings �le is not available, default
parameters will be used. CDFexport must be used interactively to create a settings �le.

/CDF=<cdf> (VMS)
-cdf <cdf> (UNIX & MS-DOS)
Not applicable. (Macintosh)

Speci�es an output CDF pathname to be used when exporting to a CDF in batch mode. Do
not include an extension. When executing interactively this pathname will initially appear at
the output CDF prompt. If this quali�er is not speci�ed, the default CDF name is "default" (in

3.3. CDFEXPORT 81

the current directory).

/TEXT=<path> (VMS)
-text <path> (UNIX & MS-DOS)
Not applicable. (Macintosh)

Speci�es a pathname to be used when exporting to a text �le listing in batch mode. When
executing interactively this pathname will initially appear at the text �le prompt. If this quali�er
is not speci�ed, the default text �le name is "default.lis" (in the current directory).

/SETTINGS=<path> (VMS)
-settings <path> (UNIX & MS-DOS)
Not applicable. (Macintosh)

Speci�es a settings �le pathname to be used when executing in batch mode. When executing
interactively this pathname will initially appear at the settings �le prompt when saving/restoring
the current settings. The default settings �le is "simple.set" if executing in simple mode and
"export.set" otherwise (with each being in the current directory).

Example(s):

VMS:

$ CDFEXPORT [.SAMPLES]

$ CDFEXPORT/ZMODE=2/CACHE=(50d,100s) GISS_WETLX

$ CDFEXPORT/PROMPT/REPORT=(W,E)/INITIAL=(EXCLUSIVE,NOFORMAT)

$ CDFEXPORT/SIMPLE/BATCH=TEXT/TEXT=FLUX.OUT FLUX1996

UNIX:

% cdfexport samples

% cdfexport -zmode 2 -cache "50d,100s" giss_wetl

% cdfexport -prompt -report "w,e" -initial "exclusive,noformat"

% cdfexport -simple -batch text -text flux.out flux1996

MS-DOS:

> cdfexport samples

> cdfexport -zmode 2 -cache "50d,100s" giss_wetl

> cdfexport -prompt -report "w,e" -initial "exclusive,noformat"

3.3.4 Interaction with CDFexport

Interaction with CDFexport is through a 4-part SelectionWindow, an ActionMenu, an OptionMenu, numer-
ous prompt windows, and several screen listing windows. Detailed online help is available for each window so
only a brief description of each will be given here. After selecting a CDF from which to export, part 1 of the
SelectionWindow will be loaded with a line for the <Record> item, the <Indices> item, and each variable.

82 CHAPTER 3. TOOLKIT REFERENCE

The <Record> item allows the record number to be included in a screen/�le listing and/or �ltering on the
record number for any type of output. The <Indices> item allows the dimension indices to be included in a
screen/�le listing and/or �ltering on the dimension indices for any type of output. Each variable line allows
that variable to be included and/or �ltered when generating any type of output. The KeyDefinitions

window displays the available functions and their corresponding keys for a given window/prompt. The
MessageBuffer displays errors/instructions as necessary.

Cycling through the four parts of the SelectionWindow allows the selection of the output to be generated.
The online help explains the purpose of each �eld in the four parts of the SelectionWindow. The OptionMenu
allows additional selections a�ecting the output. The ActionMenu is then used to generate the desired type
of output (as well as some other miscellaneous operations).

The easiest way to learn how to use CDFexport is to read through the online help while generating the
various types of output using a CDF with which you are familiar.

3.4 CDFconvert

3.4.1 Introduction

The CDFconvert program is used to convert various properties of a CDF. In all cases new CDFs are created.
(Existing CDFs are not modi�ed.) Any combination of the following properties may be changed when
converting a CDF.

1. The format of the CDF may be changed (see Section 2.2.7).

2. The data encoding of the CDF may be changed (see Section 2.2.8).

3. The variable majority of the CDF may be changed (see Section 2.3.15).

4. The compression of the CDF (see Section 2.2.10) or the CDF's variables (see Section 2.3.14) may be
changed.

5. The sparseness of the CDF's variables may be changed (see Sections 2.3.12 and 2.3.13).

3.4.2 Executing the CDFconvert Program

Usage:

VMS:

$ CDFCONVERT [/SKELETON=<skt-cdf-path>] [/[NO]LOG]

[/[NO]PERCENT] [/REPORT=(<types>)]

[/CACHE=(<sizes>)] [/[NO]PAGE] [/[NO]STATISTICS]

<src-cdf-spec>

[/ZMODE=<mode>] [/[NO]NEG2POSFP0]

<dst-cdf-spec>

3.4. CDFCONVERT 83

[/SINGLE | /MULTI] [/ROW | /COLUMN] [/[NO]DELETE]

[/ENCODING=<encoding> | /HOST | /NETWORK]

[/COMPRESSION=(<types>)] [/SPARSENESS=(<types>)]

UNIX:

% cdfconvert [-skeleton <skt-cdf-path>] [-[no]log]

[-[no]percent] [-report "<types>"]

[-cache "<sizes>"] [-[no]page] [-[no]statistics]

<src-cdf-spec>

[-zmode <mode>] [-[no]neg2posfp0]

<dst-cdf-spec>

[-single | -multi] [-row | -column] [-[no]delete]

[-encoding <encoding> | -host | -network]

[-compression <types>] [-sparseness <types>]

MS-DOS:7

> cdfconvert [-skeleton <skt-cdf-path>] [-[no]log]

[-[no]percent] [-report "<types>"]

[-cache "<sizes>"] [-[no]page] [-[no]statistics]

<src-cdf-spec>

[-zmode <mode>] [-[no]neg2posfp0]

<dst-cdf-spec>

[-single | -multi] [-row | -column] [-[no]delete]

[-encoding <encoding> | -host | -network]

[-compression <types>] [-sparseness <types>]

Macintosh:

Double-click on the CDFconvert icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to convert the CDFs. Clicking on the Help button
will display online help. Clicking on the Quit button terminates CDFconvert.

Parameter(s):

<src-cdf-spec> (VMS, UNIX, & MS-DOS)
Source edit �eld (Macintosh)

The source CDF(s). This can be either a single CDF pathname or a directory/wildcard path in
which case all CDFs that match the speci�cation will be converted. Wildcards are allowed in
the CDF name but not in the directory path. In either case do not specify an extension.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which a single CDF may be selected.

<dst-cdf-spec> (VMS, UNIX, & MS-DOS)
7On MS-DOS systems the executable is named CDFCVT.EXE.

84 CHAPTER 3. TOOLKIT REFERENCE

Destination edit �eld (Macintosh)

The destination of the converted CDF(s). This may be a single CDF pathname only if a single
source CDF was speci�ed. If the directory paths are the same, then a di�erent CDF name must
be speci�ed. If the source CDF speci�cation is a directory/wildcard path, then this must be a
directory path (other than the source directory path). This may also be a directory path if only
a single CDF is being converted. In any case do not specify an extension.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard output �le dialog is displayed in which a single CDF may be speci�ed.

Quali�er(s):

/SKELETON=<skt-cdf-path> (VMS)
-skeleton <skt-cdf-path> (UNIX & MS-DOS)
Skeleton edit �eld (Macintosh)

The pathname of a skeleton CDF to be used during the conversions. (Do not enter an extension.)
The skeleton CDF is used in the following cases:

1. If a format for the destination CDF was not speci�ed, then the format of the skeleton
CDF will be used.

2. If a variable majority for the destination CDF was not speci�ed, then the variable
majority of the skeleton CDF will be used.

3. If a data encoding for the destination CDF was not speci�ed, then the data encoding
of the skeleton CDF will be used.

Specifying a skeleton CDF is optional.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which the skeleton CDF may be selected.

/[NO]LOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh)

Speci�es whether or not messages about the progress of each conversion are displayed.

/[NO]PAGE (VMS)
-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh)

Speci�es whether or not the output is displayed a page at a time. A prompt for the RETURN key
will be issued after each page. A page is generally 22 lines of output.

/[NO]PERCENT (VMS)
-[no]percent (UNIX & MS-DOS)
Display percentages check box (Macintosh)

Speci�es whether or not the percentage of a variable's values converted is displayed during the
conversion of that variable. Message logging must also be enabled.

/[NO]DELETE (VMS)

3.4. CDFCONVERT 85

-[no]delete (UNIX & MS-DOS)
Delete existing check box (Macintosh)

Speci�es whether or not a destination CDF is deleted if it already exists.

/SINGLE | /MULTI (VMS)
-single | -multi (UNIX & MS-DOS)
Source/Single/Multi radio buttons (Macintosh)

The format of the destination CDF(s).

VMS, UNIX, & MS-DOS: This overrides the format of the skeleton CDF (if one was speci-
�ed). If neither this quali�er nor a skeleton CDF is speci�ed, then the format of a destination
CDF will be the same as that of the source CDF.

Macintosh: Selecting Single or Multi will override the format of the skeleton CDF (if one
was speci�ed). If Source is selected (and a skeleton CDF was not speci�ed), then the format
of a destination CDF will be the same as that of the source CDF. (Selecting Source will not
override the format of a speci�ed skeleton CDF.)

/ROW | /COLUMN (VMS)
-row | -column (UNIX & MS-DOS)
Source/Row/Column radio buttons (Macintosh)

The variable majority of the destination CDF(s).

VMS, UNIX, & MS-DOS: This overrides the variable majority of the skeleton CDF (if one
was speci�ed). If neither this quali�er nor a skeleton CDF is speci�ed, then the variable majority
of a destination CDF will be the same as that of the source CDF.

Macintosh: Selecting Row or Column will override the variable majority of the skeleton CDF
(if one was speci�ed). If Source is selected (and a skeleton CDF was not speci�ed), then the
variable majority of a destination CDF will be the same as that of the source CDF. (Selecting
Source will not override the variable majority of a speci�ed skeleton CDF.)

/ENCODING=<encoding> | /HOST | /NETWORK (VMS)
-encoding <encoding> | -host | -network (UNIX & MS-DOS)
Source/Host/Network/Sun...Vax radio buttons (Macintosh)

The data encoding of the destination CDF(s).

VMS, UNIX, & MS-DOS: This overrides the data encoding of the skeleton CDF (if one
was speci�ed). If neither this quali�er nor a skeleton CDF is speci�ed, then the data encoding
of a destination CDF will be the same as that of the source CDF. The possible values of
<encoding> are host, network, sun, vax, decstation, sgi, ibmpc, ibmrs, mac, hp, next,
alphaosf1, alphavmsd, and alphavmsg (and their uppercase equivalents). Note that the host
and network quali�ers are no longer necessary (but are supported for compatibility with previous
CDF distributions).

Macintosh: Selecting Host, Network, or a speci�c machine will override the data encoding of
the skeleton CDF (if one was speci�ed). If Source is selected (and a skeleton CDF was not
speci�ed), then the data encoding of a destination CDF will be the same as that of the source
CDF. (Selecting Source will not override the data encoding of a speci�ed skeleton CDF.)

/COMPRESSION=(<types>) (VMS)
-compression <types> (UNIX & MS-DOS)
Compression edit �eld (Macintosh)

86 CHAPTER 3. TOOLKIT REFERENCE

Speci�es the types of compression to be used for the CDF and/or variables. The <types> option
consists of a comma-separated list of the following. . .

cdf:<cT> CDF's compression.

vars:<cT> Compression for all variables.

vars:<cT>:<bF> Compression for all variables with a blocking factor
speci�ed.

vars:<cT>:<bF>:<r%> Compression for all variables with a blocking factor
and reserve percentage speci�ed.

var:<name>:<cT> Compression for one particular variable.

var:<name>:<cT>:<bF> Compression for one particular variable with a block-
ing factor speci�ed.

var:<name>:<cT>:<bF>:<r%> Compression for one particular variable with a block-
ing factor and reserve percentage speci�ed.

Where <cT> is one of the following compressions: none, rle.0, huff.0, ahuff.0, or gzip.<level>;
<bF> is a blocking factor; <r%> is a reserve percentage; and <name> is a delimited, case-sensitive
variable name with the following syntax:

<delim><char1><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited
variable name must be enclosed in double quote marks (to preserve case-sensitivity).

For the gzip compression, <level>must be in the range from 1 (fastest compression) to 9 (best
compression).

For compressions not speci�ed the compression in the source CDF will be used. Specifying a
variable compression using var:. . . overrides a compression speci�ed with vars:. . .

/SPARSENESS=(<types>) (VMS)
-sparseness <types> (UNIX & MS-DOS)
Sparseness edit �eld (Macintosh)

Speci�es the types of sparseness to be used for the variables. The <types> option consists of a
comma-separated list of the following. . .

vars:<sT> Sparseness for all variables.

var:<name>:<sT> Sparseness for one particular variable.

Where <sT> is one of the following: srecords.no, srecords.pad, or srecords.prev; and
<name> is a delimited, case-sensitive variable name with the following syntax:

<delim><char1><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited
variable name must be enclosed in double quote marks (to preserve case-sensitivity).

For sparsenesses not speci�ed the sparseness in the source CDF will be used. Specifying a
variable sparseness using var:. . . overrides a sparseness speci�ed with vars:. . .

3.4. CDFCONVERT 87

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es the zMode that should be used with the source CDF(s). The zMode may be one of
the following:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

Note that using zMode/1 or zMode/2 on a source CDF that contains rVariables will produce a
destination CDF containing only zVariables. The zMode \view" provided for the source CDF
is written to the destination CDF during the conversion.

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)
Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

88 CHAPTER 3. TOOLKIT REFERENCE

Example(s):

VMS:

$ CDFCONVERT CDF$SMPL:TEMPLATE0 TEMPLATE0X

$ CDFCONVERT/LOG/REPORT=(ERRORS) CDF$SMPL: USER_DISK:[USER.CDF]

$ CDFCONVERT CAC_SST_BLENDED CAC_SST_BLENDEDX/SINGLE/NETWORK

$ CDFCONVERT/SKELETON=CDF$SMPL:TEMPLATE3 CAC_SST_BLENDED* [USER.CDF]

UNIX:

% cdfconvert ../samples/template0 template0x

% cdfconvert -log -report "errors" ../samples /disk4/user/cdf

% cdfconvert cac_sst_blended cac_sst_1 -single -network

% cdfconvert -skeleton template3 '../cdf/cac_sst*' ~user/cdf

MS-DOS:

> cdfconvert ..\samples\tplate0 tplate0x

> cdfconvert -log -report "errors" ..\samples c:\dir4\user\cdf

> cdfconvert cac_sst cac_sst1 -single -network

> cdfconvert -skeleton tplate3 a:\cdf\cac_sst dir5\cdf

VMS, UNIX, & MS-DOS: Command line help is displayed when CDFconvert is executed without any
arguments.

3.4.3 Output from the CDFconvert Program

As CDFconvert executes, the name of each CDF being converted is displayed. If message logging is enabled,
the progress of each conversion is also displayed.

3.5 CDFcompare

3.5.1 Introduction

The CDFcompare program displays the di�erences between two CDFs. More than one pair of CDFs can
be compared. This program would be used to verify changes made to a CDF (comparing it with the saved
original) or to verify the conversions performed by CDFconvert (see Section 3.4).

3.5. CDFCOMPARE 89

3.5.2 Executing the CDFcompare Program

Usage:

VMS:

$ CDFCOMPARE [/[NO]LOG] [/[NO]ATTR] [/[NO]VAR] [/[NO]NUMBER]

[/[NO]ETC] [/[NO]NEG2POSFP0] [/ZMODES=(<mode1>,<mode2>)]

[/[NO]LOCATION] [/REPORT=(<types>)] [/CACHE=(<sizes>)]

[/[NO]PAGE] [/[NO]STATISTICS] [/[NO]PERCENT] [/[NO]VALUE]

<cdf-spec-1> <cdf-spec-2>

UNIX:

% cdfcompare [-[no]log] [-[no]attr] [-[no]var] [-[no]number]

[-[no]etc] [-[no]neg2posfp0] [-zmodes "<mode1>,<mode2>"]

[-[no]location] [-report "<types>"] [-cache "<sizes>"]

[-[no]page] [-[no]statistics] [-[no]percent] [-[no]value]

<cdf-spec-1> <cdf-spec-2>

MS-DOS:8

> cdfcompare [-[no]log] [-[no]attr] [-[no]var] [-[no]number]

[-[no]etc] [-[no]neg2posfp0] [-zmodes "<mode1>,<mode2>"]

[-[no]location] [-report "<types>"] [-cache "<sizes>"]

[-[no]page] [-[no]statistics] [-[no]percent] [-[no]value]

<cdf-spec-1> <cdf-spec-2>

Macintosh:

Double-click on the CDFcompare icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to compare the CDFs. Clicking on the Help button
will display online help. Clicking on the Quit button terminates CDFcompare.

Parameter(s):

<cdf-spec-1> <cdf-spec-2> (VMS, UNIX, & MS-DOS)
CDF1 and CDF2 edit �elds (Macintosh)

The speci�cations of the CDFs to be compared. (Do not enter extensions.) These can be either
a pathname specifying a single CDF or a directory/wildcard path specifying more than one
CDF. Wildcards are allowed in the CDF name but not in the directory path.

If two directory/wildcard paths are speci�ed, all of the CDFs with matching names will be
compared. If a CDF pathname and a directory/wildcard path are speci�ed, the CDF speci�ed

8On MS-DOS systems the executable is named CDFCMP.EXE.

90 CHAPTER 3. TOOLKIT REFERENCE

will be compared with the CDF in the directory/wildcard path having the same name. If two
CDF pathnames are speci�ed, the CDFs are compared. (This is the only way to compare two
CDFs having di�erent names.)

Macintosh: At the end of each �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which a single CDF may be selected.

Quali�er(s):

/[NO]LOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh)

Speci�es whether or not messages about the progress of each comparison are displayed.

/[NO]PERCENT (VMS)
-[no]percent (UNIX & MS-DOS)
Display percentages check box (Macintosh)

Speci�es whether or not the percentage of a variable's values compared is displayed during the
comparison of that variable. Message logging must also be enabled.

/[NO]ATTR (VMS)
-[no]attr (UNIX & MS-DOS)
Compare attributes check box (Macintosh)

Speci�es whether or not attributes (and their entries) are to be compared.

/[NO]VAR (VMS)
-[no]var (UNIX & MS-DOS)
Compare variables check box (Macintosh)

Speci�es whether or not variables are to be compared. Note that an rVariable will never be
compared with a zVariable.

/[NO]NUMBER (VMS)
-[no]number (UNIX & MS-DOS)
Compare numbers check box (Macintosh)

Speci�es whether or not numbering di�erences between attributes with the same names and
between variables with the same names are to be displayed.

/[NO]ETC (VMS)
-[no]etc (UNIX & MS-DOS)
Compare etc. check box (Macintosh)

Speci�es whether or not di�erences transparent to an application will be displayed. These would
consist of the version/release/increment of the creating CDF library, format, encoding, etc.

/ZMODES=(<mode1>,<mode2>) (VMS)
-zmodes "<mode1>,<mode2>" (UNIX & MS-DOS)
zMode1 and zMode2 radio buttons (Macintosh)

Speci�es the zModes that should be used with the CDF(s) being compared. Note that di�er-
ent zModes may be used for the two CDF(s) speci�cations. The zModes may be one of the
following:

3.5. CDFCOMPARE 91

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/[NO]PAGE (VMS)
-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh)

Speci�es whether or not the output is displayed a page at a time. A prompt for the RETURN key
will be issued after each page. A page is generally 22 lines of output.

/[NO]LOCATION (VMS)
-[no]location (UNIX & MS-DOS)
Display locations check box (Macintosh)

Speci�es whether or not the locations of variable value di�erences are displayed. The locations
are displayed in the form:

<record-number>:[<index1>,<index2>,...,<indexN>]

/[NO]VALUE (VMS)
-[no]value (UNIX & MS-DOS)
Display values check box (Macintosh)

Speci�es whether or not the values are displayed when a di�erence is detected between variable
values or attribute entries. Note that for variable values to be displayed, the display of the
locations of the di�erences must also be enabled.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases

92 CHAPTER 3. TOOLKIT REFERENCE

(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)
Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

Example(s):

VMS:

$ CDFCOMPARE GISS_WETL GISS_WETL1

$ CDFCOMPARE/LOG/NOATTR/NUMBER/REPORT=(ERRORS) GISS_WETL CDF$SMPL:GISS_WETL

$ CDFCOMPARE/NOVAR/NOETC/ZMODES=(1,2) NCDS$SMPL: NCDS$DATA:

UNIX:

% cdfcompare giss_wetl giss_wetl1

% cdfcompare -log -noattr -number -report "errors" giss_wetl ../giss_wetlx

% cdfcompare -novar -noetc -zmodes "1,2" /user5/CDFs /user6/CDFs

MS-DOS:

> cdfcompare gisswetl c:\gisswetl

> cdfcompare -log -noattr -number -report "errors" gisswetl ..\..\giswetlx

> cdfcompare -novar -noetc -zmodes "1,2" a:\cdfs c:\cdf\cdfs

VMS, UNIX, & MS-DOS: Command line help is displayed when CDFcompare is executed without any
arguments.

3.5.3 Output from the CDFcompare Program

The output from CDFcompare consists of messages indicating the di�erences found. If message logging is
enabled, the progress of each comparison is also displayed.

3.6 CDFstats

3.6.1 Introduction

The CDFstats program produces a statistical report on a CDF's variable data. Both rVariables and zVari-
ables are analyzed. For each variable it determines the actual minimum and maximum values (in all of the

3.6. CDFSTATS 93

variable records), the minimum and maximum values within a valid range of values (with illegal/�ll values
being ignored), and the variable's monotonicity.

Monotonicity refers to whether or not a variable's data values increase or decrease from record to record or
along a dimension. This property is checked only if the variable varies along just one \dimension" (considering
records to be another \dimension"). For example, consider a CDF with the 2-dimensional rVariables shown
in Table 3.1.

rVariable Record Variance Dimension Variances Check Monotonicity?
EPOCH VARY NOVARY,NOVARY Yes
LATITUDE NOVARY VARY,NOVARY Yes
LONGITUDE NOVARY NOVARY,VARY Yes
ELEVATION NOVARY VARY,VARY No
TEMPERATURE VARY VARY,VARY No

Table 3.1: Example rVariables, CDFstats Monotonicity Checking

The EPOCH, LATITUDE, and LONGITUDE rVariables would be checked for monotonicity but the ELEVATION and
TEMPERATURE rVariables would not be checked.

3.6.2 Special Attribute Usage

CDFstats uses the following special attributes:

FORMAT Used when displaying a variable statistic (e.g., minimum variable value).

VALIDMIN If range checking is enabled, used as the minimum valid value for a variable. For
a variable with a non-character data type, only the �rst element of its VALIDMIN
attribute entry is used. Also, if requested, the VALIDMIN attribute entry for a
variable will be updated with the actual minimum value found. Again, if the
variable has a non-character data type the VALIDMIN attribute entry will be
updated to have just one element.

VALIDMAX If range checking is enabled, used as the maximum valid value for a variable. For
a variable with a non-character data type, only the �rst element of its VALIDMAX
attribute entry is used. Also, if requested, the VALIDMAX attribute entry for a
variable will be updated with the actual maximum value found. Again, if the
variable has a non-character data type the VALIDMAX attribute entry will be
updated to have just one element.

FILLVAL If �ll value usage is enabled, used as the value which is ignored while collecting
statistics for a variable.

MONOTON If requested, the MONOTON attribute entry for a variable will be updated with
the actual monotonicity found. The possible values for the MONOTON attribute
entry are described in Section 3.1.3.

SCALEMIN If requested, the SCALEMIN attribute entry for a variable will be updated with
the actual minimum value found.

SCALEMAX If requested, the SCALEMAX attribute entry for a variable will be updated with
the actual maximum value found.

94 CHAPTER 3. TOOLKIT REFERENCE

The usage of these special attributes can be controlled with command line quali�ers.

3.6.3 Executing the CDFstats Program

Usage:

VMS:

$ CDFSTATS [/[NO]RANGE] [/[NO]FILL] [/OUTPUT=<file-path>] [/[NO]FORMAT]

[/[NO]PAGE] [/[NO]UPDATE_VALIDS] [/[NO]UPDATE_SCALES]

[/[NO]UPDATE_MONOTONIC] [/ZMODE=<mode>] [/[NO]NEG2POSFP0]

[/REPORT=(<types>)] [/CACHE=(<sizes>)] [/[NO]STATISTICS]

<cdf-path>

UNIX:

% cdfstats [-[no]range] [-[no]fill] [-output <file-name>] [-[no]format]

[-[no]page] [-[no]update_valids] [-[no]update_scales]

[-[no]update_monotonic] [-zmode <mode>] [-[no]neg2posfp0]

[-report "<types>"] [-cache "<sizes>"] [-[no]statistics]

<cdf-path>

MS-DOS:

> cdfstats [-[no]range] [-[no]fill] [-output <file-name>] [-[no]format]

[-[no]page] [-[no]update_valids] [-[no]update_scales]

[-[no]update_monotonic] [-zmode <mode>] [-[no]neg2posfp0]

[-report "<types>"] [-cache "<sizes>"] [-[no]statistics]

<cdf-path>

Macintosh:

Double-click on the CDFstats icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to analyze the CDF. Clicking on the Help button
will display online help. Clicking on the Quit button terminates CDFstats.

Parameter(s):

<cdf-path> (VMS, UNIX, & MS-DOS)
CDF edit �eld (Macintosh)

The pathname of the CDF to analyze. (Do not specify an extension.)

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which the CDF may be selected.

3.6. CDFSTATS 95

Quali�er(s):

/[NO]RANGE (VMS)
-[no]range (UNIX & MS-DOS)
Range checking check box (Macintosh)

Speci�es whether or not range checking will be performed. To perform range checking, the CDF
must contain VALIDMIN and VALIDMAX attributes. A variable must also have an entry for each
of these attributes in order for range checking to be performed on that variable. Note that for
variables having a non-character data type only the �rst element of the VALIDMIN and VALIDMAX

attribute entries are used.

/[NO]FILL (VMS)
-[no]fill (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh)

Speci�es whether or not �ll values are ignored when collecting statistics. The FILLVAL attribute
entry for a variable (if it exists) is used as the �ll value.

/OUTPUT=<file-path> (VMS)
-output <file-path> (UNIX & MS-DOS)
Output edit �eld (Macintosh)

If this quali�er is speci�ed, the statistical output is written to the named �le. If the named �le
does not have an extension, .sts (UNIX & Macintosh) or .STS (VMS & MS-DOS) is appended
automatically. If this quali�er is not speci�ed, the output is displayed on the screen.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard output �le dialog is displayed in which the output �le may be speci�ed.

/[NO]FORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh)

Speci�es whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/[NO]PAGE (VMS)
-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh)

Speci�es whether or not the output is displayed a page at a time. A prompt for the RETURN key
will be issued after each page. A page is generally 22 lines of output.

/[NO]UPDATE VALIDS (VMS)
-[no]update valids (UNIX & MS-DOS)
Update VALIDMIN/MAX check boxes (Macintosh)

Speci�es whether or not the VALIDMIN and VALIDMAX attribute entry values are updated for
each variable based on the actual minimum and maximum values found (with �ll values being
ignored if requested). If the VALIDMIN and VALIDMAX attributes do not exist, they are created.

/[NO]UPDATE SCALES (VMS)
-[no]update scales (UNIX & MS-DOS)
Update SCALEMIN/MAX check boxes (Macintosh)

Speci�es whether or not the SCALEMIN and SCALEMAX attribute entry values are updated for
each variable based on the actual minimum and maximum values found (with �ll values being

96 CHAPTER 3. TOOLKIT REFERENCE

ignored if requested). If the SCALEMIN and SCALEMAX attributes do not exist, they are created.

/[NO]UPDATE MONOTONIC (VMS)
-[no]update monotonic (UNIX & MS-DOS)
Update MONOTON check box (Macintosh)

Speci�es whether or not the MONOTONIC attribute entry values are updated for each variable
based on the monotonicity found (with �ll values being ignored if requested). If the MONOTONIC
attribute does not exist, it is created.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es the zMode that should be used with the CDF. The zMode may be one of the follow-
ing:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)

3.6. CDFSTATS 97

Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

Example(s):

VMS:

$ CDFSTATS TEST1

$ CDFSTATS/REPORT=(ERRORS) GISS_SOIL

$ CDFSTATS/NOFILL/OUTPUT=TEMPLATE3/NORANGE CDF$SMPL:TEMPLATE3

UNIX:

% cdfstats giss_soil

% cdfstats -range -fill -report "errors" $CDF_SMPL/giss_soil

% cdfstats -norange -output template3 ../../samples/template3

MS-DOS:

> cdfstats gisssoil

> cdfstats -range -nofill -report "errors" a:\cdfs\gisssoil

> cdfstats -norange -output tplate3 ..\..\samples\tplate3

VMS, UNIX, & MS-DOS: Command line help is displayed when CDFstats is executed without any
arguments.

3.6.4 Output from the CDFstats Program

The format of the output from CDFstats is as follows:

For each variable (rVariables and zVariables),

<number>. <name> <n-dims>:[<dim-sizes>] <rec-vary>/<dim-varys> (<data-type>/<n-elems>)

min: <min-value>

min in range: <min-value-in-range>

valid min: <valid-min>, <low-values> low value(s)

max: <max-value>

max in range: <max-value-in-range>

valid max: <valid-max>, <high-values> high value(s)

fill value: <fill-value>, <fill-values> fill value(s)

monotonic: <monotonicity>

98 CHAPTER 3. TOOLKIT REFERENCE

If range checking and/or �ll value �ltering is disabled, the corresponding �elds will not be displayed. The
�elds are de�ned as follows:

<number> The variable number.

<name> The variable name.

<rec-vary> The record variance of the variable | either a T or F.

<dim-varys> The dimension variances of the variable | for each dimension ei-
ther a T or F. This �eld is not present if there are zero (0) dimen-
sions.

<data-type> The data type of the variable (e.g., CDF REAL4).

<n-elems> The number of elements of the variable's data type.

<n-dims> The number of dimensions of a zVariable. This �eld is not present
for an rVariable.

<dim-sizes> The dimension sizes of a zVariable. This �eld is not present for an
rVariable or if the zVariable has zero (0) dimensions.

<min-value> The minimum value found (regardless of any range checking per-
formed).

<min-value-in-range> The minimum value found within the valid range.

<valid-min> The minimum valid value (VALIDMIN attribute entry value).

<low-values> The number of values found that are less than the valid minimum.

<max-value> The maximum value found (regardless of any range checking per-
formed).

<max-value-in-range> The maximum value found with the valid range.

<valid-max> The maximum valid value (VALIDMAX attribute entry value).

<high-values> The number of values found that are greater than the valid maxi-
mum.

<fill-value> The �ll value (FILLVAL attribute entry value).

<fill-values> The number of �ll values found.

<monotonicity> The monotonicity of the variable.

The <monotonicity> �eld may take on one of the following values.

Steady (one value) The variable has only one value in the CDF.

Steady (all values the same) All values of the variable are the same.

Increase Values strictly increase (with increasing record num-
ber/dimension index).

3.7. SKELETONTABLE 99

Decrease Values strictly decrease (with increasing record num-
ber/dimension index).

noDecrease (some values the same) Consecutive values either increase or are the same (with
increasing record number/dimension index).

noIncrease (some values the same) Consecutive values either decrease or are the same
(with increasing record number/dimension index).

False Consecutive values both increase and decrease.

n/a The variable was not checked for monotonicity because
it varies along more than one \dimension" (if records
are considered another \dimension").

3.7 SkeletonTable

3.7.1 Introduction

The SkeletonTable program is used to create an ASCII text �le called a skeleton table containing information
about a given CDF. (SkeletonTable can also be instructed to output the skeleton table to the terminal screen.)
It reads a CDF and writes to the skeleton table the following information.

1. Format (single or multi �le), data encoding, variable majority.

2. Number of dimensions and dimension sizes for the rVariables.

3. gAttribute de�nitions and gEntry values.

4. rVariable and zVariable de�nitions and vAttribute de�nitions with rEntry/zEntry values.

5. Data values for all or a subset of the CDF's variables.

The above information is written in a format that can be \understood" by the SkeletonCDF program (see
Section 3.8). SkeletonCDF reads a skeleton table and creates a new CDF (called a skeleton CDF).

3.7.2 Special Attribute Usage

The special attribute FORMAT is used by SkeletonTable (depending on the setting of the \format" quali�er)
when writing variable values in a skeleton table.

3.7.3 Executing the SkeletonTable Program

Usage:

VMS:

100 CHAPTER 3. TOOLKIT REFERENCE

$ SKELETONTABLE [/SKELETON=<skeleton-path>] [/[NO]LOG] [/ZMODE <mode>]

[/NONRV | /NRVTABLE | /VALUES=<values>] [/[NO]SCREEN]

[-[NO]NEG2POSFP0] [/[NO]FORMAT] [/REPORT=(<types>)]

[/CACHE=(<sizes>)] [/[NO]PAGE] [/[NO]STATISTICS]

<cdf-path>

UNIX:

% skeletontable [-skeleton <skeleton-path>] [-[no]log] [-zmode <mode>]

[-nonrv | -nrvtable | -values <values>] [-[no]screen]

[-[no]neg2posfp0] [-[no]format] [-report "<types>"]

[-cache "<sizes>"] [-[no]page] [-[no]statistics]

<cdf-path>

MS-DOS:9

> skeletontable [-skeleton <skeleton-path>] [-[no]log] [-zmode <mode>]

[-nonrv | -nrvtable | -values <values>] [-[no]screen]

[-[no]neg2posfp0] [-[no]format] [-report "<types>"]

[-cache "<sizes>"] [-[no]page] [-[no]statistics]

<cdf-path>

Macintosh:

Double-click on the SkeletonTable icon. When the desired parameters/quali�ers have been selected
in the dialog box, click on the Enter button to create the skeleton table. Clicking on the Help button
will display online help. Clicking on the Quit button terminates SkeletonTable.

Parameter(s):

<cdf-path> (VMS, UNIX, & MS-DOS)
CDF edit �eld (Macintosh)

The pathname of the CDF from which the skeleton table will be created. (Do not enter an
extension.)

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which the CDF may be selected.

Quali�er(s):

/SKELETON=<skeleton-path> (VMS)
-skeleton <skeleton-path> (UNIX & MS-DOS)
Skeleton edit �eld (Macintosh)

9On MS-DOS systems the executable is named CDF2SKT.EXE.

3.7. SKELETONTABLE 101

The pathname of the skeleton table to be created. (Do not enter an extension because .skt

is appended automatically.) If this quali�er is not speci�ed, the skeleton table will be named
<cdf-name>.skt in the default/current directory (where <cdf-name> is the name portion of the
CDF from which the skeleton table was created).

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard output �le dialog is displayed in which the skeleton table may be speci�ed.

/VALUES=<values> | /NRVTABLE | /NONRV (VMS)
-values <values> | -nrvtable | -nonrv (UNIX & MS-DOS)
No values/.../Selected values radio buttons (Macintosh)

Only one of these quali�ers may be speci�ed. The meaning of each is as follows:

/VALUES=<values> (VMS)
-values <values> (UNIX & MS-DOS)
No values/.../Selected values radio buttons (Macintosh)

VMS, UNIX, & MS-DOS: The <values> option speci�es which variable values
should be put in the skeleton table. Select one of the options from the list which
follows. Macintosh: Selecting one of the radio buttons described in the following
list speci�es which variable values should be put in the skeleton table.

none (VMS, UNIX, & MS-DOS)
No values radio button (Macintosh)

No variable values should be put in the skeleton table.

nrv (VMS, UNIX, & MS-DOS)
NRV values radio button (Macintosh)

Only NRV variable values should be put in the skeleton table.

rv (VMS, UNIX, & MS-DOS)
RV values radio button (Macintosh)

Only RV variable values should be put in the skeleton table.

all (VMS, UNIX, & MS-DOS)
All values radio button (Macintosh)

All variable values should be put in the skeleton table.

<named> (VMS, UNIX, & MS-DOS)
Selected values radio button (Macintosh)

Values of the named variables should be put in the skeleton table.

VMS, UNIX, & MS-DOS: <values> is a comma-separated list of
delimited variable names with the entire list enclosed in double quote
marks. NOTE: Do not use double quote marks to delimit a variable
name.

Macintosh: The named variables are speci�ed in the Variables edit
�eld as a comma-separated list of delimited variable names.

/NONRV (VMS)

102 CHAPTER 3. TOOLKIT REFERENCE

-nonrv (UNIX & MS-DOS)
Not supported (Macintosh)

Ignore NRV data. (No values are placed in the skeleton table.)

/NRVTABLE (VMS)
-nrvtable (UNIX & MS-DOS)
Not supported (Macintosh)

Put NRV variable data values in the skeleton table.

VMS, UNIX, & MS-DOS: Note that only the \values" quali�er is actually needed. The
others are supported for compatibility with previous CDF distributions.

/[NO]LOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh)

Speci�es whether or not messages are displayed as the program executes.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es the zMode that should be used with the CDF. The zMode may be one of the follow-
ing:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of NOVARY [false] are removed.

/[NO]FORMAT (VMS)
-[no]format (UNIX & MS-DOS)
Use FORMAT check box (Macintosh)

Speci�es whether or not the FORMAT attribute is used when writing variable values (if the FORMAT
attribute exists and an entry exists for the variable).

/[NO]NEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

/CACHE=(<sizes>) (VMS)

3.7. SKELETONTABLE 103

-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX & MS-DOS)
Display statistics check box (Macintosh)

Speci�es whether or not caching statistics are displayed when a CDF is closed.

/[NO]SCREEN (VMS)
-[no]screen (UNIX & MS-DOS)
Output to screen check box (Macintosh)

Speci�es whether or not the skeleton table is to be displayed on the terminal screen (written to
the \standard output"). If not, the skeleton table is written to a text �le.

/[NO]PAGE (VMS)
-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh)

Speci�es whether or not the output is displayed a page at a time. A prompt for the RETURN key
will be issued after each page. A page is generally 22 lines of output.

Example(s):

VMS:

$ SKELETONTABLE/NOLOG/REPORT=(ERRORS) FGGE3B

$ SKELETONTABLE/SKELETON=FGGE3B/NONRV FGGE3B

$ SKELETONTABLE/SCREEN/VALUES="'Var1','Var2'"

UNIX:

% skeletontable -nolog -report "errors" fgge3b

% skeletontable -skeleton fgge3b -nonrv ../cdfs/fgge3b

% skeletontable -screen -values "'Var1','Var2'"

MS-DOS:

> skeletontable -nolog -report "errors" fgge3b

104 CHAPTER 3. TOOLKIT REFERENCE

> skeletontable -skeleton fgge3b -nonrv c:\temp\fgge3b

> skeletontable -screen -values "'Var1','Var2'"

VMS, UNIX, & MS-DOS: Command line help is displayed when SkeletonTable is executed without any
arguments.

3.7.4 Output from the SkeletonTable Program

The format of the skeleton table is described in Appendix A.

3.8 SkeletonCDF

3.8.1 Introduction

The SkeletonCDF 10 program is used to make a fully structured CDF, called a skeleton CDF, by reading a
text �le called a skeleton table. The SkeletonCDF program allows a CDF to be created with the following:

1. The necessary header information | the number of dimensions and dimension sizes for the rVariables,
format, data encoding, and variable majority.

2. The gAttribute de�nitions and any number of gEntries for each.

3. The rVariable and zVariable de�nitions.

4. The vAttribute de�nitions and the entries corresponding to each variable.

5. The data values for any or all of the variables.

The created CDF is referred to as a skeleton CDF.

3.8.2 Executing the SkeletonCDF Program

Usage:

VMS:

$ SKELETONCDF [/CDF=<cdf-path>] [/[NO]LOG] [/[NO]DELETE] [/[NO]FILLVAL]

[/REPORT=(<types>)] [/[NO]NEG2POSFP0] [/CACHE=(<sizes>)]

[/ZMODE=<mode>] <skeleton-path>

UNIX:
10This program was originally named CDFskeleton. It has been renamed to ease the confusion caused some users. Now,

SkeletonCDF is used to create skeleton CDFs and SkeletonTable is used to create skeleton tables.

3.8. SKELETONCDF 105

% skeletoncdf [-cdf <cdf-path>] [-[no]log] [-[no]delete] [-[no]fillval]

[-report "<types>"] [-[no]neg2posfp0] [-cache "<sizes>"]

[-zmode <mode>] <skeleton-path>

MS-DOS:11

> skeletoncdf [-cdf <cdf-path>] [-[no]log] [-[no]delete] [-[no]fillval]

[-report "<types>"] [-[no]neg2posfp0] [-cache "<sizes>"]

[-zmode <mode>] <skeleton-path>

Macintosh:

Double-click on the SkeletonCDF icon. When the desired parameters/quali�ers have
been selected in the dialog box, click on the Enter button to create the skeleton CDF.
Clicking on the Help button will display online help. Clicking on the Quit button
terminates SkeletonCDF.

Parameter(s):

<skeleton-path> (VMS, UNIX, & MS-DOS)
Skeleton edit �eld (Macintosh)

The pathname of the skeleton table from which a skeleton CDF will be created. (Do not specify
an extension.)

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard input �le dialog is displayed from which a skeleton table may be selected.

Quali�er(s):

/CDF=<cdf-path> (VMS)
-cdf <cdf-path> (UNIX & MS-DOS)
CDF edit �eld (Macintosh)

The pathname of the CDF that will be created (overriding the pathname in the skeleton table).
If this quali�er is not speci�ed, the CDF pathname in the skeleton table is used. Do not specify
an extension in the pathname.

Macintosh: At the end of this �eld a button labeled Select is present. When selected, a
standard output �le dialog is displayed in which a CDF name may be speci�ed.

/[NO]LOG (VMS)
-[no]log (UNIX & MS-DOS)
Log progress check box (Macintosh)

Speci�es whether or not messages are displayed as the program executes.

/[NO]NEG2POSFP0 (VMS)
11On MS-DOS systems the executable is named SKT2CDF.EXE.

106 CHAPTER 3. TOOLKIT REFERENCE

-[no]neg2posfp0 (UNIX & MS-DOS)
-0.0 to 0.0 check box (Macintosh)

Speci�es whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a
CDF. -0.0 is an illegal oating point value on VAXes and DEC Alphas running OpenVMS.

/[NO]DELETE (VMS)
-[no]delete (UNIX & MS-DOS)
Delete existing check box (Macintosh)

Speci�es whether or not the CDF will be deleted �rst if it already exists (essentially overwriting
it).

/[NO]FILLVAL (VMS)
-[no]fillval (UNIX & MS-DOS)
Use FILLVAL check box (Macintosh)

Speci�es whether or not entries of the FILLVAL vAttribute are used to set the pad values for
the corresponding variables. If this quali�er is speci�ed, the FILLVAL vAttribute must exist and
only those variables with an entry for the FILLVAL vAttribute will be a�ected.

/CACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX & MS-DOS)
Cache sizes edit �eld (Macintosh)

Speci�es the cache sizes to be used by the CDF library for the dotCDF �le and the various scratch
�les. The <sizes> option is a comma-separated list of <size><type> pairs where <size> is
a cache size and <type> is the type of �le as follows: d for the dotCDF �le, s for the staging
scratch �le, and c for the compression scratch �le. For example, 200d,100s speci�es a cache size
of 200 for the dotCDF �le and a cache size of 100 for the staging scratch �le. The dotCDF �le
cache size can also be speci�ed without the d �le type for compatibility with older CDF releases
(e.g., 200,100s). Note that not all of the �le types must be speci�ed. Those not speci�ed will
receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
bu�ers to be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX & MS-DOS)
zMode radio buttons (Macintosh)

Speci�es the zMode that should be used with the skeleton table. If zMode is enabled, zVariables
will be created from the de�nitions in the rVariables section. The zMode may be one of the
following:

0 Indicates that zMode should be disabled.

1 Indicates that zMode/1 should be used. The dimension variances of rVariables will
be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a
variance of F [false] are removed.

/REPORT=(<types>) (VMS)
-report "<types>" (UNIX & MS-DOS)
Report info's/warnings/errors check boxes (Macintosh)

Speci�es the types of return status codes from the CDF library that should be reported/displayed.
The <types> option is a comma-separated list of zero or more of the following symbols: errors,

3.9. CDFINQUIRE 107

warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

Example(s):

VMS:

$ SKELETONCDF FGGE3B

$ SKELETONCDF/NOLOG/CDF=[-.TEMP]FGGE3B_X/REPORT=(ERRORS) FGGE3B

UNIX:

% skeletoncdf fgge3b

% skeletoncdf -nolog -cdf ../fgge3b_x -report "errors" fgge3b

MS-DOS:

> skeletoncdf fgge3b

> skeletoncdf -nolog -cdf ..\fgge3b_x -report "errors" a:\fgge3b

VMS, UNIX, & MS-DOS: Command line help is displayed when SkeletonCDF is executed without any
arguments.

3.8.3 Creating the Skeleton Table

A skeleton table is a text �le having .skt as a �le extension. The normal method of creating and using a
skeleton table would be to use SkeletonTable on an existing CDF that is similar to the CDF you want to
create. Then edit the created skeleton table to meet your needs, and use SkeletonCDF to create the new
CDF. The skeleton table could also be created from scratch with any text editor.

The format of the skeleton table is described in Appendix A.

3.9 CDFinquire

3.9.1 Introduction

The CDFinquire program displays the version of the CDF distribution being used, most con�gurable pa-
rameters, and the default toolkit quali�ers.

108 CHAPTER 3. TOOLKIT REFERENCE

3.9.2 Executing the CDFinquire Program

Usage:

VMS:

$ CDFINQUIRE /ID [/[NO]PAGE]

UNIX:

% cdfinquire -id [-[no]page]

MS-DOS:12

> cdfinquire -id [-[no]page]

Macintosh:

Double-click on the CDFinquire icon. When the desired parameters/quali�ers have
been selected in the dialog box, click on the Enter button to inquire the CDF distri-
bution. Clicking on the Help button will display online help. Clicking on the Quit
button terminates CDFinquire.

Parameter(s):

(None)

Quali�er(s):

/ID (VMS)
-id (UNIX & MS-DOS)
Id check box (Macintosh)

Causes the version of your CDF distribution and the default toolkit quali�ers to be displayed.
This quali�er is required.

/[NO]PAGE (VMS)
-[no]page (UNIX & MS-DOS)
Page output check box (Macintosh)

Speci�es whether or not the output is displayed a page at a time. A prompt for the RETURN key
will be issued after each page. A page is generally 22 lines of output.

12On MS-DOS systems the executable is named CDFINQ.EXE.

3.10. CDFDIR 109

Example(s):

VMS:

$ CDFINQUIRE/ID/PAGE

UNIX:

% cdfinquire -id -page

MS-DOS:

> cdfinquire -id -page

VMS, UNIX, & MS-DOS: Command line help is displayed when CDFinquire is executed without any
arguments.

3.9.3 Output from the CDFinquire Program

The version of your CDF distribution is displayed �rst followed by the con�gurable parameters and then the
default toolkit quali�ers (in the style of the operating system being used).

3.10 CDFdir

3.10.1 Introduction

The CDFdir utility is used to display a directory listing of a CDF's �les.13 The dotCDF �le is displayed �rst
followed by the rVariable �les and then the zVariable �les (if either exist in a multi-�le CDF) in numerical
order.

3.10.2 Executing the CDFdir Program

The command line syntax for CDFdir is as follows:

Usage:

VMS:

13CDFdir is not available on a Macintosh.

110 CHAPTER 3. TOOLKIT REFERENCE

$ CDFDIR <cdf-path>

UNIX:

% cdfdir <cdf-path>

MS-DOS:

> cdfdir <cdf-path>

Parameter(s):

<cdf-path>

The pathname of the CDF for which to display a directory listing (do not specify an extension).

Example(s):

VMS:

$ CDFDIR NCDS$DATA:GISS_WETL_CLIMATOLOGY

$ CDFDIR [-.TEMP]FGGE3B

UNIX:

% cdfdir ../cac_sst_blended

% cdfdir ~/CDFs/giss_wetl_climatology

MS-DOS:

> cdfdir ..\cac_sst

> cdfdir c:\cdfs\gisswetl

Help is displayed when CDFdir is executed without any arguments.

3.10.3 Output from the CDFdir Program

The format of the output from CDFdir is that of a directory listing on the operating system being used.

3.11. CDFBROWSE 111

3.11 CDFbrowse

CDFbrowse has been replaced by CDFedit (see Section 3.2).14

3.12 CDFlist

CDFlist has been replaced by CDFexport (see Section 3.3).

3.13 CDFwalk

The functionallity of CDFwalk has been added to CDFexport (see Section 3.3).

14The alias/symbol for CDFbrowse still exists in the \de�nitions" �le on UNIX/VMS systems but now executes CDFedit in

a browse-only mode.

112 CHAPTER 3. TOOLKIT REFERENCE

Appendix A

Skeleton Table Format

A.1 Introduction

Skeleton tables are both created by and read by CDF utility programs. SkeletonTable creates a skeleton
table by reading a CDF. SkeletonCDF creates a CDF by reading a skeleton table. In almost all cases the
format of the skeleton tables read and written will be the same. Any di�erences are minor and will be
described where appropriate.

The skeleton table has a free format (except where noted) | you need not be concerned with any column
alignments, spaces between �elds, or spaces between successive lines. However, certain syntax rules do apply
to skeleton tables.

1. Lines are limited to 132 characters.

2. Keywords for the header section, gAttributes section, vAttributes section, rVariables section, and end
section must always be speci�ed (in that order). The zVariables section is optional | its keyword may
be omitted.

3. An exclamation point (!) at any point signi�es a comment until the end of the line. Any characters
encountered after the exclamation point will be ignored. An exclamation point may begin a line
(making the entire line a comment). Exclamation points inside delimited character strings are part of
the string and do not cause the start of a comment.

4. Attribute and variable names must be delimited. Any character not in the name may be used as the
delimiter with the following exceptions:

(a) Do not use an exclamation point (!) to delimit an attribute or variable name.

(b) Do not use a period (.) to delimit an attribute name in the variables section.

(c) Do not use a left square bracket ([) or a numeral to delimit a variable name.

5. When specifying a character string attribute entry value, do not use a hyphen (-) to delimit the string
or strings (if the string is split across one or more lines).

6. All items are referenced from one (1). These include gAttribute gEntry numbers and NRV variable
index values.

113

114 APPENDIX A. SKELETON TABLE FORMAT

In the descriptions that follow, optional �elds are shown in brackets ([...]).

A.2 Header Section

The header section contains general information about the CDF. The format of the header section is as
follows:

#header

CDF NAME: <cdf-name>

DATA ENCODING: <data-encoding>

MAJORITY: <variable-majority>

FORMAT: <cdf-format>

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----------

<rVars>/<zVars> <gAttrs> <vAttrs> <n-recs>/z <n-dims> <dim-sizes>

The �elds are de�ned as follows:

<cdf-name> The name of the CDF. When SkeletonTable creates a skeleton table, this
will be the name of the corresponding CDF (not the full pathname speci-
�ed). When SkeletonCDF reads a skeleton table, this will be the name of
the CDF created unless a CDF pathname is speci�ed on the command line.
If the CDF name in the skeleton table is to be used, a full pathname must be
speci�ed (if desired) or else the CDF will be created in the default/current
directory.

<data-encoding> The data encoding of the CDF. When specifying a data encoding to the
SkeletonCDF program, the following encodings are valid: HOST, NETWORK,
VAX, ALPHAVMSd, ALPHAVMSg, ALPHAVMSi, SUN, SGi, DECSTATION, ALPHAOSF1,
IBMRS, HP, PC, MAC, and NeXT.When a skeleton table is created by SkeletonTable,
all of the above encodings with the exception of HOST are possible. Data
encoding is described in Section 2.2.8.

<variable-majority> The variable majority of the CDF. This may be either ROW or COLUMN.
Variable majority is described in Section 2.3.15.

<cdf-format> The format of the CDF. This may be either SINGLE or MULTI. CDF formats
are described in Section 2.2.7. Note that this line is optional. Skeleton ta-
bles created by SkeletonTable in CDF V2.0 did not have this line because
the single-�le option did not exist. To allow SkeletonCDF to read skeleton
tables created with SkeletonTable in CDF V2.0, this line was made op-
tional. If omitted, SkeletonCDF will create a CDF with the default format
for your CDF distribution. Consult your system manager to determine this
default. SkeletonTable (in CDF V2.1 and beyond) always generates this
line regardless of the version of the CDF being read.

A.2. HEADER SECTION 115

<rVars> The number of rVariables in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton table,
this value is ignored (but a place holder is necessary). The number of
rVariables created is determined by the number of rVariable de�nitions in
the rVariable de�nitions section.

<zVars> The number of zVariables in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton table,
this value is ignored (but a place holder is necessary). The number of
zVariables created is determined by the number of zVariable de�nitions in
the zVariable de�nitions section.

<gAttrs> The number of gAttributes in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton ta-
ble, this value is ignored (but a place holder is necessary). The number
of gAttributes created is determined by the number of de�nitions in the
gAttributes section.

<vAttrs> The number of vAttributes in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton ta-
ble, this value is ignored (but a place holder is necessary). The number
of vAttributes created is determined by the number of de�nitions in the
vAttributes section.

<n-recs> The (maximum) number of rVariable records in the CDF. SkeletonTable
always places the correct number here. However, when SkeletonCDF reads
a skeleton table, this value is ignored (but a place holder is necessary). The
number of records written to the CDF depends on whether or not any values
are speci�ed for variables. NRV variables are described in Section 2.3.10.

<n-dims> The number of dimensions for the rVariables in the CDF.

<dim-sizes> The dimension sizes for the rVariables in the CDF | one value per dimen-
sion. If the rVariables have zero (0) dimensions, this �eld would be left
blank.

An example header section for a CDF with 2-dimensional rVariables follows:

#header

CDF NAME: sample2

DATA ENCODING: NETWORK

MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -------

14/0 18 4 1/z 2 180 360

If the rVariables had zero dimensions, the header section would be as follows:

#header

116 APPENDIX A. SKELETON TABLE FORMAT

CDF NAME: sample0

DATA ENCODING: NETWORK

MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

14/0 18 4 1/z 0

A.3 gAttributes Section

The gAttributes section contains the de�nition of each gAttribute as well as any gEntries for those gAt-
tributes. The format of the gAttributes section is as follows:

#GLOBALattributes

[<global-scope-attribute-definition>

<global-scope-attribute-definition>

<global-scope-attribute-definition>

.

.

.

<global-scope-attribute-definition>]

Where <global-scope-attribute-definition>, needless to say, is a gAttribute de�nition.

Zero or more gAttribute de�nitions are allowed. (There is no limit on the number of attributes that a CDF
may have.) The format of each gAttribute de�nition is as follows:

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

<attr-name> [<entry-n>: <data-type> <value>

<entry-n>: [<data-type>] <value>

<entry-n>: [<data-type>] <value>

. . .

. . .

. . .

<entry-n>: [<data-type>] <value>] . ! note the "."

The �elds are de�ned as follows:

<attr-name> The name of the gAttribute. The name must be delimited with a char-
acter not appearing in the name itself (e.g., "TITLE" or 'History'). The
delimiting characters are not part of the gAttribute name in the CDF.

A.3. GATTRIBUTES SECTION 117

<entry-n> The gEntry number. Zero or more gEntries may be speci�ed for a gAt-
tribute, and there are no restrictions on the gEntry numbers that may be
used (except that they must be greater than zero).

<data-type> The data type for the gEntry. The data type must be one of the fol-
lowing: CDF BYTE, CDF INT1, CDF UINT1, CDF INT2, CDF UINT2, CDF INT4,
CDF UINT4, CDF REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE, CDF EPOCH,
CDF CHAR, or CDF UCHAR. The <data-type> �eld is optional for all but the
�rst gEntry speci�ed. If omitted, the data type of the previous gEntry is
assumed.

<value> The value(s) for the gEntry. A period (.) follows the value(s) of the last
gEntry for a gAttribute.

Attribute Entry Values

An attribute entry can have more than one element of the speci�ed data
type. For character data types (CDF CHAR and CDF UCHAR), each character
is the element of a string. The character string must be delimited with a
character not appearing in the string itself, and the entire delimited string
must be enclosed in braces (e.g., { "The CDF title." }). If the string will
not �t on one line, it may be continued on additional lines. The substrings
are each delimited with a unique character, and a dash (-) is placed at the
end (after the terminating delimiter) of each line except the last one. For
example,

{ "This is a longer " -

"CDF title that will" -

" not fit on one line." }

For non-character data types, the elements are enclosed in braces and sep-
arated by commas (e.g., { 1, 2, 3 }). If the elements will not all �t on
one line, they may be continued on additional lines. For example,

{ 1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0, 8.0, 9.0, 10.0 }

Note that an individual element value may not be split across lines.

The format of a value for the CDF EPOCH data type (which is also considered
a non-character data type) is de�ned in Section 2.5.4. A CDF EPOCH value
may not be split across two lines.

Several example gAttribute de�nitions follow:

#GLOBALattributes

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

118 APPENDIX A. SKELETON TABLE FORMAT

"TITLEa" 1: CDF_CHAR { "CDAW-9A; SABRE" }.

^TITLEb^ 1: CDF_CHAR { "CDAW-9A; SABRE " -

"Backscatter Radar, 20s." }.

"History" 1: CDF_CHAR { "CDF created 02-Jan-1961" }

2: { "CDF modified 23-Oct-1964" }.

"TIMES" 1: CDF_EPOCH { 04-Jul-1976 12:00:00.000,

31-Oct-1976 00:00:00.000 }

2: { 25-Dec-1976 01:10:00.000,

01-Jan-1977 01:10:30.000 }.

&Factors& 1: CDF_REAL4 { 12.5 }

2: { 17.4 }

3: { 8.5 }

4: CDF_INT2 { 7 }

5: { 12 }.

A.4 vAttributes Section

The vAttributes section contains the names of the vAttributes in the CDF. Any rEntries or zEntries for these
vAttributes are de�ned in the rVariables/zVariables sections (following the de�nition of the corresponding
variable). The format of the vAttributes section is as follows:

#VARIABLEattributes

[<attribute-name>

<attribute-name>

<attribute-name>

.

.

.

<attribute-name>]

Where <attribute-name> is a vAttribute name delimited with a character not appearing in the name itself
(e.g., "VALIDMIN" or 'Units'). The delimiting characters are not part of the vAttribute name in the CDF.
There may be zero or more vAttribute names. (There is no limit on the number of attributes that a CDF
may have.)

An example vAttributes section follows:

#VARIABLEattributes

"FIELDNAM"

"VALIDMIN"

"Units"

A.5. RVARIABLES SECTION 119

A.5 rVariables Section

The rVariables section contains the de�nition of each rVariable in the CDF, the values for any vAttribute
rEntries associated with each rVariable, and (optionally) data values for those rVariables. The format of the
rVariables section is as follows:

#variables

[<variable-definition>

<variable-definition>

<variable-definition>

.

.

.

<variable-definition>]

Where <variable-definition> is an rVariable de�nition. The format of each rVariable de�nition is as
follows:

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

<var-name> <var-data-type> <n-elems> <rec-vary> <dim-varys>

! Attribute Data

! Name Type Value

! --------- ---- -----

[<attr-name> <entry-data-type> <entry-value>

<attr-name> <entry-data-type> <entry-value>

<attr-name> <entry-data-type> <entry-value>

. . .

. . .

. . .

<attr-name> <entry-data-type> <entry-value>]. ! Note the "."

[[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>

. .

. .

. .

[<rec-num>:]<indices> = <value>]

Each �eld is de�ned as follows:

<var-name> The name of the rVariable. The name must be delimited with a character

120 APPENDIX A. SKELETON TABLE FORMAT

not appearing in the name itself (e.g., "EPOCH" or 'Temperature'). The
delimiting characters are not part of the rVariable name in the CDF.

<var-data-type> The data type for the rVariable. The data type must be one of the fol-
lowing: CDF BYTE, CDF INT1, CDF UINT1, CDF INT2, CDF UINT2, CDF INT4,
CDF UINT4, CDF REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE, CDF EPOCH,
CDF CHAR, or CDF UCHAR.

<n-elems> The number of elements of the data type. For character data types (CDF CHAR

and CDF UCHAR), this is the number of characters in each string. For non-
character data types, this value must be one (1).

<rec-vary> The record variance of the rVariable. This must be either T (the values vary
from record to record) or F (the values do not vary from record to record).

<dim-varys> The dimension variances of the rVariable. For each dimension there must
be either a T (the values vary along that dimension) or F (the values do not
vary along that dimension). Each dimension variance must be separated by
at least one space. If the rVariables have zero dimensions, this �eld would
be left blank.

<attr-name> The name of the vAttribute for which to specify an rEntry for this rVariable.
The vAttribute must have been speci�ed in the vAttributes section. The
name must be delimited with a character not appearing in the name itself
(e.g., "SCALEMAX" or 'range'). The delimiting characters are not part of
the vAttribute name in the CDF.

<entry-data-type> The data type for the vAttribute rEntry. The data type must be one
of the following: CDF BYTE, CDF INT1, CDF UINT1, CDF INT2, CDF UINT2,
CDF INT4, CDF UINT4, CDF REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE,
CDF EPOCH, CDF CHAR, or CDF UCHAR.

<entry-value> The value(s) for the vAttribute rEntry. The format of attribute entry values
is described in Section A.3.

NOTE: The last rEntry MUST be followed by a period (.). If no rEntries
are speci�ed for an rVariable, the period must still be present.

<rec-num> The record number of an rVariable value. This will be present only for
record-variant (RV) rVariables.

<indices> The indices of an rVariable value. The indices are enclosed in brackets and
separated by commas (e.g., [23,1] or [1,80]). If the rVariables have zero
dimensions, [] would be speci�ed (the brackets are still required).

<value> The value at the given record/indices. For character data types (CDF CHAR

or CDF UCHAR) the string must be delimited with a unique character and
enclosed in braces ({...}) in the same manner as for an attribute entry
for a character data type. For non-character data types the value is not
enclosed in braces (the braces are not necessary because there can only be
one element). The format for CDF EPOCH values is described in Section 2.5.4.

The vAttribute rEntries are optional. If omitted, the terminating period is still required. The rVariable
values are also optional.

A.5. RVARIABLES SECTION 121

Several sample rVariable de�nitions for a CDF with 2-dimensional rVariables follow:

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Latitude" CDF_REAL4 1 F F T

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_REAL4 { -90.0 }

"VALIDMAX" CDF_REAL4 { 90.0 }

"scale" CDF_REAL4 { -60.0, 60.0 }.

[1,1] = -60.0

[1,2] = -30.0

[1,3] = 0.0

[1,4] = 30.0

[1,5] = 60.0

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"EPOCH" CDF_EPOCH 1 T F F

! Attribute Data

! Name Type Value

! -------- ---- -----

"scale" CDF_EPOCH { 10-Oct-1991 00:00:00.000,

20-Oct-1991 23:59:59.999 }.

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

'Tmp' CDF_INT2 1 T T T

! Attribute Data

! Name Type Value

! -------- ---- -----

'Fieldname' CDF_CHAR { "Temperature (C)" }.

122 APPENDIX A. SKELETON TABLE FORMAT

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Pres_lvl" CDF_REAL4 1 T F F

! Attribute Data

! Name Type Value

! -------- ---- -----

. ! no attribute entries

1:[1,1] = 1013.1

2:[1,1] = 1015.0

3:[1,1] = 1012.3

A sample variable de�nition for a CDF with 0-dimensional rVariables follows:

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"Latitude" CDF_REAL4 1 F

! Attribute Data

! Name Type Value

! -------- ---- -----

"VALIDMIN" CDF_REAL4 { -90.0 }

"VALIDMAX" CDF_REAL4 { 90.0 }.

[] = -12.3

A.6 zVariables Section

The optional zVariables section contains the de�nition of each zVariable in the CDF, the values for any
vAttribute zEntries associated with each zVariable, and (optionally) data values for those zVariables. The
format of the zVariables section is as follows:

#zVariables

[<variable-definition>

<variable-definition>

<variable-definition>

.

A.6. ZVARIABLES SECTION 123

.

.

<variable-definition>]

Where <variable-definition> is a zVariable de�nition. The format of each zVariable de�nition is as
follows:

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

<var-name> <var-data-type> <n-elems> <dims> <sizes> <rec-vary> <dim-varys>

! Attribute Data

! Name Type Value

! --------- ---- -----

[<attr-name> <entry-data-type> <entry-value>

<attr-name> <entry-data-type> <entry-value>

<attr-name> <entry-data-type> <entry-value>

. . .

. . .

. . .

<attr-name> <entry-data-type> <entry-value>]. ! Note the "."

[[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>

. .

. .

. .

[<rec-num>:]<indices> = <value>]

Each �eld is de�ned as follows:

<var-name> The name of the zVariable. The name must be delimited with a character
not appearing in the name itself (e.g., "EPOCH" or 'Temperature'). The
delimiting characters are not part of the zVariable name in the CDF.

<var-data-type> The data type for the zVariable. The data type must be one of the fol-
lowing: CDF BYTE, CDF INT1, CDF UINT1, CDF INT2, CDF UINT2, CDF INT4,
CDF UINT4, CDF REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE, CDF EPOCH,
CDF CHAR, or CDF UCHAR.

<n-elems> The number of elements of the data type. For character data types (CDF CHAR

and CDF UCHAR) this is the number of characters in each string. For non-
character data types this value must be one (1).

<dims> The number of dimensions for the zVariable.

124 APPENDIX A. SKELETON TABLE FORMAT

<sizes> The dimension sizes | one value per dimension. If the zVariable has zero
(0) dimensions, this �eld would be left blank.

<rec-vary> The record variance of the zVariable. This must be either T (the values
vary from record to record) or F (the values do not vary from record to
record).

<dim-varys> The dimension variances of the zVariable. For each dimension there must
be either a T (the values vary along that dimension) or F (the values do not
vary along that dimension). Each dimension variance must be separated
by at least one space. If the zVariable has zero dimensions, this �eld would
be left blank.

<attr-name> The name of the vAttribute for which to specify a zEntry for this zVariable.
The vAttribute must have been speci�ed in the vAttributes section. The
name must be delimited with a character not appearing in the name itself
(e.g., "SCALEMAX" or 'range'). The delimiting characters are not part of
the vAttribute name in the CDF.

<entry-data-type> The data type for the vAttribute zEntry. The data type must be one
of the following: CDF BYTE, CDF INT1, CDF UINT1, CDF INT2, CDF UINT2,
CDF INT4, CDF UINT4, CDF REAL4, CDF FLOAT, CDF REAL8, CDF DOUBLE,
CDF EPOCH, CDF CHAR, or CDF UCHAR.

<entry-value> The value(s) for the vAttribute zEntry. The format of attribute entry values
is described in Section A.3.

NOTE: The last zEntry MUST be followed by a period (.). If no zEntries
are speci�ed for a zVariable, the period must still be present.

<rec-num> The record number of an zVariable value. This will be present only for
record-variant (RV) zVariables.

<indices> The indices of an zVariable value. The indices are enclosed in brackets and
separated by commas (e.g., [23,1] or [1,80]). If the zVariable has zero
dimensions, [] would be speci�ed (the brackets are still required).

<value> The value at the given record/indices. For character data types (CDF CHAR

or CDF UCHAR) the string must be delimited with a unique character and
enclosed in braces ({...}) in the same manner as for an attribute entry
for a character data type. For non-character data types the value is not
enclosed in braces (the braces are not necessary because there can only be
one element). The format for CDF EPOCH values is described in Section 2.5.4.

The vAttribute zEntries are optional. If omitted, the terminating period is still required. The zVariables
values are also optional.

Several sample zVariable de�nitions follow:

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

"Instrument" CDF_CHAR 10 0 F

A.7. END SECTION 125

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Measuring instrument" }.

[] = { "Gonkulator" }

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

"Ticks" CDF_BYTE 1 1 3 T T

! Attribute Data

! Name Type Value

! -------- ---- -----

. ! no attribute entries

1:[1] = 1

1:[2] = 2

1:[3] = 3

2:[1] = 3

2:[2] = 2

2:[3] = 1

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ---------- -------- ---------

"WIND VELOCITY" CDF_REAL4 1 3 360 180 10 T T T T

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Wind velocity." }

"VALIDMIN" CDF_REAL4 { 0.0 }

"VALIDMAX" CDF_REAL4 { 300.0 }

"UNITS " CDF_CHAR { "Knots" }

"FORMAT " CDF_CHAR { "F9.1 " }.

A.7 End Section

This section simply consists of the keyword #end. This section is required.

126 APPENDIX A. SKELETON TABLE FORMAT

A.8 Example Skeleton Table

An example skeleton table containing rVariables and zVariables follows:

! Skeleton table for the "example2" CDF.

! Generated: Thursday, 17-Nov-1994 14:07:58

! CDF created/modified by CDF V2.4.10

! Skeleton table created by CDF V2.5.0

#header

CDF NAME: example2

DATA ENCODING: NETWORK

MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

4 1 7 1 2 11 7

#GLOBALattributes

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

"TITLE" 1: CDF_CHAR { "Title for example2 CDF." } .

#VARIABLEattributes

"FIELDNAM"

"VALIDMIN"

"VALIDMAX"

"SCALEMIN"

"SCALEMAX"

"UNITS"

"FORMAT"

#variables

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"EPOCH" CDF_EPOCH 1 T F F

A.8. EXAMPLE SKELETON TABLE 127

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Time since 0 A.D. " }

"VALIDMIN" CDF_EPOCH { 01-Jan-0000 00:00:00.000 }

"VALIDMAX" CDF_EPOCH { 01-Jan-2089 00:00:00.000 }

"SCALEMIN" CDF_EPOCH { 01-Apr-1986 07:00:00.000 }

"SCALEMAX" CDF_EPOCH { 01-Apr-1986 23:00:00.000 }

"UNITS" CDF_CHAR { "milliseconds (UT) " }

"FORMAT" CDF_CHAR { "E14.0 " } .

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"LONGITUD" CDF_REAL4 1 F T F

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Longitude variable " }

"VALIDMIN" CDF_REAL4 { 0.0 }

"VALIDMAX" CDF_REAL4 { 180.0 }

"SCALEMIN" CDF_REAL4 { -50.0 }

"SCALEMAX" CDF_REAL4 { 50.0 }

"UNITS" CDF_CHAR { "Degrees " }

"FORMAT" CDF_CHAR { "F8.3 " } .

[1,1] = -50.0

[2,1] = -40.0

[3,1] = -30.0

[4,1] = -20.0

[5,1] = -10.0

[6,1] = 0.0

[7,1] = 10.0

[8,1] = 20.0

[9,1] = 30.0

[10,1] = 40.0

[11,1] = 50.0

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"LATITUDE" CDF_REAL4 1 F F T

! Attribute Data

! Name Type Value

! -------- ---- -----

128 APPENDIX A. SKELETON TABLE FORMAT

"FIELDNAM" CDF_CHAR { "Latitude variable " }

"VALIDMIN" CDF_REAL4 { 0.0 }

"VALIDMAX" CDF_REAL4 { 90.0 }

"SCALEMIN" CDF_REAL4 { -30.0 }

"SCALEMAX" CDF_REAL4 { 30.0 }

"UNITS" CDF_CHAR { "Degrees " }

"FORMAT" CDF_CHAR { "F8.3 " } .

[1,1] = -30.0

[1,2] = -20.0

[1,3] = -10.0

[1,4] = 0.0

[1,5] = 10.0

[1,6] = 20.0

[1,7] = 30.0

! Variable Data Number Record Dimension

! Name Type Elements Variance Variances

! -------- ---- -------- -------- ---------

"TEMPERATURE" CDF_INT4 1 T T T

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Temperature " }

"VALIDMIN" CDF_INT4 { 0 }

"VALIDMAX" CDF_INT4 { 50 }

"SCALEMIN" CDF_INT4 { 0 }

"SCALEMAX" CDF_INT4 { 10 }

"UNITS" CDF_CHAR { "Deg C " }

"FORMAT" CDF_CHAR { "I2 " } .

#zVariables

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

"BIAS" CDF_INT4 1 0 T

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Correction bias for temperature" }

"VALIDMIN" CDF_INT4 { -5 }

"VALIDMAX" CDF_INT4 { 5 }

A.8. EXAMPLE SKELETON TABLE 129

"UNITS " CDF_CHAR { "deg C " }

"FORMAT " CDF_CHAR { "I2 " } .

1:[] = 34

2:[] = 28

3:[] = 17

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

"Coefficients" CDF_REAL4 1 1 3 F T

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Temperature model coefficients." }

"FORMAT " CDF_CHAR { "F9.1 " } .

[1] = -0.0254

[2] = 14.2338

[3] = -9.9444

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ------- -------- ---------

"TMP-model" CDF_REAL4 1 2 360 180 T T T

! Attribute Data

! Name Type Value

! -------- ---- -----

"FIELDNAM" CDF_CHAR { "Temperature model." }

"VALIDMIN" CDF_REAL4 { -20.0 }

"VALIDMAX" CDF_REAL4 { 50.0 }

"SCALEMIN" CDF_REAL4 { 0.0 }

"SCALEMAX" CDF_REAL4 { 30.0 }

"UNITS " CDF_CHAR { "deg C " }

"FORMAT " CDF_CHAR { "F9.6 " } .

#end

130 APPENDIX A. SKELETON TABLE FORMAT

Appendix B

IDL Support

B.1 Introduction

The CDF distribution includes a set of IDL functions/procedures that allow access to the CDF library
(hereafter referred to as the CDF/IDL interface). The functions/procedures are used in the same manner
as the Standard and Internal Interfaces are used in programs written in C.1 CDFs can be both read and
written/modi�ed.

Research Systems, Inc. (the developers of IDL) have also implemented an interface to CDF that is part of
the IDL product. It di�ers from the interface provided with the CDF distribution in that it is intended more
for the non-programmer (and is functionally similar to other interfaces they provide). Because IDL's CDF
interface relies on a version of the CDF library being linked into the IDL executable, IDL's interface may lag
behind the most recent CDF distribution. This can cause problems as new features are added to the CDF
library (which IDL's interface will not know about).

CDF's interface relies on IDL's support of dynamic linking. IDL in turn relies on the operating system being
used to support dynamic linking in a reasonable way. Currently, only the VAX (OpenVMS), DEC Alpha
(OpenVMS & OSF/1), Sun (SunOS & SOLARIS), HP (HP-UX), SGi (IRIX 5.x & 6.x), and IBM RS6000
(AIX) support dynamic linking in a way that makes it possible to use CDF's interface in IDL. Because IDL's
CDF interface is built into the IDL executable, it does not rely on dynamic linking and is therefore available
on every machine on which IDL is supported (assuming CDF is also supported on that machine).

B.2 Using CDF's IDL Interface

This section assumes that you are using the \de�nitions" �le provided with the CDF distribution (and that
it has been properly con�gured and named by your system manager). The \de�nitions" �le is a command �le
named DEFINITIONS.COM on VMS systems and a script �le named definitions.<shell-type> on UNIX
systems where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the

1In previous CDF releases, when using the Internal Interface it was required that the current CDF be selected in each call to

CDFlib. This is no longer necessary. The current CDF is now maintained from one call to the next of CDFlib (as is the current

status code).

131

132 APPENDIX B. IDL SUPPORT

Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). The \de�nitions" �le de�nes the
logical name IDL STARTUP on VMS systems and the environment variable IDL STARTUP on UNIX systems
to the full directory path of an IDL startup �le provided with the CDF distribution. When IDL is started,
this startup �le is automatically executed (because IDL STARTUP is de�ned). The startup �le performs the
following functions. . .

1. Makes known to IDL the functions/procedures that are used to call the CDF library (and perform
other utility operations).

2. Sets IDL's internal paths. These are used when searching for a batch �le to be executed or when
locating online help �les.

3. Executes one or more batch �les that creates a number of local variables necessary for calling CDF
functions/procedures and then interpreting the results. Check with your system administrator to see
which batch �les are being executed.

A list of messages should be displayed indicating the CDF functions/procedures that have been compiled.

If you are already using your own startup �le (pointed to by your de�nition of IDL STARTUP), you should
remove the de�nition of IDL STARTUP from the CDF \de�nitions" �le being used and do one of the follow-
ing. . .

1. Add the contents of the CDF/IDL startup �le to your own startup �le.

2. Have your startup �le execute the CDF/IDL startup �le.

The de�nition of IDL STARTUP in the CDF \de�nitions" �le being used points to the location of the CDF/IDL
startup �le.

B.3 CDF \Include" Files

A number of parameters (macro constants) are necessary when calling functions in the CDF library from a
C program. These parameters are de�ned in the cdf.h header �le. In a Fortran application the cdf.inc

include �le de�nes these parameters. There are three available methods for making these parameters known
when calling CDF functions/procedures in IDL: constant structures, mapping functions, and individual local
variables.

B.3.1 Constant Structures

A batch �le,2 cdf0x.pro, is available that creates a set of IDL structure variables that contain the CDF
parameter values. Each structure variable contains one or more tags (�elds) which are initialized to the
proper value. The following structure variables are created by cdf0x.pro.3

2Batch �les are also known as include �les.
3The batch �le cdf0.pro is also available that serves the same purpose. The only di�erence is that its structure variable

names are longer.

B.3. CDF \INCLUDE" FILES 133

Structure Variable Contents
CDFx General CDF constants
CDFdt Data type constants
CDFen Encoding constants
CDFde Decoding constants
CDFic Informational status code constants
CDFwc Warning status code constants
CDFec Error status code constants
CDFiif Internal Interface function constants
CDFiix General Internal Interface item constants
CDFiia Internal Interface attribute item constants
CDFiie Internal Interface entry item constants
CDFiir Internal Interface rVariable item constants
CDFiiz Internal Interface zVariable item constants

To display the contents of a particular structure variable, use the IDL help command with the /structures
keyword. For example. . .

IDL> @cdf0x

IDL> help, /structures, cdfx

** Structure <40023808>, 52 tags, length=208, refs=1:

CDF_MIN_DIMS LONG 0

CDF_MAX_DIMS LONG 10

.

.

.

IDL>

The following example will show how the structure variables created by cdf0x.pro would be used.

IDL> @cdf0x

IDL> dimSizes = lonarr(CDFx.CDF_MAX_DIMS)

IDL> status = CDFcreate ('test1', 0L, dimSizes, CDFen.NETWORK_ENCODING, $

IDL> CDFx.ROW_MAJOR, id)

IDL> if (status lt CDFic.CDF_OK) ...

IDL> status = CDFattrCreate (id, 'TITLE', CDFx.GLOBAL_SCOPE, attrNum)

IDL> if (status lt CDFic.CDF_OK) ...

IDL> status = CDFattrPut (id, attrNum, 0L, CDFdt.CDF_CHAR, 6L, 'Test 1')

IDL> if (status lt CDFic.CDF_OK) ...

IDL> status = CDFclose (id)

IDL> if (status lt CDFic.CDF_OK) ...

B.3.2 Mapping Functions

Three mapping functions are available that take as an argument a string containing the name of a parameter
and return the numerical value for that parameter as an IDL longword. These mapping function are made
known to IDL in the CDF/IDL startup �le.

134 APPENDIX B. IDL SUPPORT

Mapping Function Purpose
MCP Map general CDF parameters
MSC Map status code constants
MII Map Internal Interface constants

For example, the status code value for NO SUCH CDF would be retrieved as follows. . .

IDL> status = CDFopen ('test1', id)

IDL> if (status eq MSC('NO_SUCH_CDF')) print, "CDF not found..."

The use of these mapping functions will add execution overhead because of the number of string comparisons
that must be performed by the functions to locate the proper parameter value.

B.3.3 Individual Local Variables

Three batch �les are available that de�ne a local variable for each CDF parameter that might be needed.
Unfortunately, IDL limits the number of local variables that may be de�ned in any one function/procedure.
This limit will almost certainly be reached if you have to include one or more of these batch �les. For this
reason one of the two previously described methods should be used to de�ne the necessary CDF parameters.

NOTE: These batch �les are maintained in the CDF distribution only in the event that IDL might raise
the limit on local variables.

B.4 On-Line Help

IDL provides an on-line help facility to which help for user written procedures/functions can be added.4

A specially formatted �le is provided with the CDF distribution that contains on-line help for the proce-
dures/functions in the CDF/IDL interface. This �le is named cdf26cdfif.help and is located in the \help"
directory of the CDF distribution. If you are using the appropriate \de�nitions" �le, IDL will be able to
locate this �le when online help is requested. Choose the topic called CDF26CDFIF rather than CDF. (CDF
provides online help for IDL's CDF interface | not the interface provided with the CDF distribution.)

B.5 Available Functions

The CDF functions/procedures available at the IDL command line exactly mirror the Standard and Internal
Interface functions available for a program written in C.5 The CDF C Reference Manual describes the
functionality of each in detail. The syntax required when calling each function is as follows. . .

4At least this used to be the case. IDL seems to be using a new online help facility that does not recognize user supplied

help �les.
5With the exception of the multiple variable access operations available via the Internal Interface (<GET ,rVARs RECDATA >,

<PUT ,rVARs RECDATA >, <GET ,zVARs RECDATA >, and <PUT ,zVARs RECDATA >). Because these operations deal with variables

having di�erent data types, the use of structures to store the values would be the logical method to use. Unfortunately, IDL

does not currently support the manipulation of structures from within a C application (which is how CDF's IDL interface is

implemented). Support of these operations will hopefully be added in the future.

B.5. AVAILABLE FUNCTIONS 135

IDL> status = CDFlib (fnc1, ...)

IDL> status = CDFcreate (CDFpath, numDims, dimSizes, encoding, majority, $

IDL> id)

IDL> status = CDFopen (CDFpath, id)

IDL> status = CDFdoc (id, version, release, copyright)

IDL> status = CDFinquire (id, numDims, dimSizes, encoding, majority, $

IDL> maxRec, numVars, numAttrs)

IDL> status = CDFclose (id)

IDL> status = CDFdelete (id)

IDL> status = CDFerror (status, text)

IDL> status = CDFattrCreate (id, attrName, attrScope, attrNum)

IDL> status = CDFattrRename (id, attrNum, attrName)

IDL> status = CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

IDL> status = CDFattrEntryInquire (id, attrNum, entryNum, dataType, $

IDL> numElems)

IDL> status = CDFattrPut (id, attrNum, entryNum, dataType, numElems, value)

IDL> status = CDFattrGet (id, attrNum, entryNum, value)

IDL> status = CDFvarCreate (id, varName, dataType, numElems, recVary, $

IDL> dimVarys, varNum)

IDL> status = CDFvarRename (id, varNum, varName)

IDL> status = CDFvarInquire (id, varNum, varName, dataType, numElems, $

IDL> recVary, dimVarys)

IDL> status = CDFvarPut (id, varNum, recNum, indices, value)

IDL> status = CDFvarGet (id, varNum, recNum, indices, value)

IDL> status = CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, $

IDL> indices, counts, intervals, buffer)

IDL> status = CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, $

IDL> indices, counts, intervals, buffer)

IDL> status = CDFvarClose (id, varNum)

IDL> attrNum = CDFattrNum (id, attrName)

IDL> varNum = CDFvarNum (id, varName)

IDL> epoch = computeEPOCH (year, month, day, hour, minute, second, $

IDL> millisecond)

IDL> EPOCHbreakdown, epoch, year, month, day, hour, minute, second, $

IDL> millisecond

IDL> epoch = parseEPOCH (epochString)

IDL> epoch = parseEPOCH1 (epochString)

IDL> epoch = parseEPOCH2 (epochString)

IDL> epoch = parseEPOCH3 (epochString)

IDL> encodeEPOCH, epoch, epochString

IDL> encodeEPOCH1, epoch, epochString

IDL> encodeEPOCH2, epoch, epochString

IDL> encodeEPOCH3, epoch, epochString

IDL> encodeEPOCHx, epoch, format, epochString

The IDL data types to use for integer arguments are always longwords or arrays of longwords using IDL's
data type of TYP LONG.6 Attribute entries and variable values should have the data types corresponding
their CDF data types. CDF pathnames and variable/attribute names are IDL character strings. CDFid

6On DEC Alpha's running OSF/1, don't confuse the C data type of long with IDL's data type of TYP LONG. The C long is

eight bytes while IDL's TYP LONG is four bytes.

136 APPENDIX B. IDL SUPPORT

and CDFstatus are also longwords. The CDF C Reference Manual may be used as a guide (especially for
CDFlib). Arguments passed to the CDF functions/procedures must obviously be created and initialized
before the call. Arrays of longwords are necessary for dimension sizes, variances, etc.7 Arguments returned
by the CDF functions will be created to be of the proper data type and size (they do not have to be created
before calling the CDF function).

Also provided are two functions, row to col and col to row, that may be used to change the majority of
an array (or arrays) of values. This function is necessary because CDF can store variable values in either
row or column major order. The syntax of row to col is as follows. . .

IDL> status = row_to_col (inArray, outArray, numDims, dimSizes, numBytes, $

arrayCount

where. . .

inArray The array (or arrays) of values to convert | row major ordering. Any valid
IDL data type is allowed.

outArray The converted array (or arrays) of values | column major ordering. This
array will be created by row to col.

numDims The number of dimensions in the array (or arrays). This value must be a
longword.

dimSizes The size of each dimension. This must be an array of longwords | one
longword per dimension.

numBytes The number of bytes in each value. This value must be a longword.

arrayCount The number of arrays to convert. The order of the arrays will not be
a�ected. This value must be a longword.

status Completion status code. This value will be a longword. The possible values
are de�ned in cdf1.pro.

Multiple arrays (records) of CDF variable values should always be stored with the last dimension of the IDL
array corresponding to the record number. For example, assume a CDF variable with two dimensions whose
sizes are [180,360]. If 50 records are to be stored, an IDL array with three dimensions whose sizes are
[180,360,50] should be used. If the CDF variables have row major ordering, row to col would be called
with numDims set to 2, dimSizes set to [180,360], and arrayCount set to 50.

The syntax of col to row is as follows. . .

IDL> status = col_to_row (inArray, outArray, numDims, dimSizes, numBytes, $

arrayCount

where. . .

7If an array in a call to a CDF function won't be used because a variable is 0-dimensional, a dummy array must still be

passed to avoid an error from the CDF library. Note that embedding a call to lonarr [such as lonarr(1)] in the call to the

CDF function will work but will result in a memory leak because the allocated array will not be freed.

B.6. EXAMPLE IDL SESSION 137

inArray The array (or arrays) of values to convert | column major ordering. Any
valid IDL data type is allowed.

outArray The converted array (or arrays) of values | row major ordering. This array
will be created by col to row.

numDims The number of dimensions in the array (or arrays). This value must be a
longword.

dimSizes The size of each dimension. This must be an array of longwords | one
longword per dimension.

numBytes The number of bytes in each value. This value must be a longword.

arrayCount The number of arrays to convert. The order of the arrays will not be
a�ected. This value must be a longword.

status Completion status code. This value will be a longword. The possible values
are de�ned in cdf1.pro.

col to row would be used in those cases where an array of values created by IDL (in column-major ordering)
are to be written to a row-major CDF.

B.6 Example IDL Session

The following IDL session will open a CDF (unsuccessfully at �rst | typo), add an entry to the MODS

gAttribute, and then close the CDF.

IDL> @cdf0x

IDL> status = CDFlib (CDFiif.OPEN_, CDFiix.CDF_, 'yrdy3', id, $

IDL> CDFiif.NULL_)

IDL> status = CDFerror (status, text)

IDL> print, text

NO_SUCH_CDF: The specified CDF does not exist.

IDL> status = CDFlib (CDFiif.OPEN_, CDFiix.CDF_, 'test2', id, $

IDL> CDFiif.NULL_)

IDL> status = CDFerror (status, text)

IDL> print, text

CDF_OK: Function completed successfully.

IDL> status = CDFlib (CDFiif.SELECT_, CDFiia.ATTR_NAME_, 'MODS', $

IDL> CDFiif.GET_, CDFiia.ATTR_MAXgENTRY_, maxEntry, $

IDL> CDFiif.NULL_)

IDL> status = CDFerror (status, text)

IDL> print, text

CDF_OK: Function completed successfully.

IDL> status = CDFlib (CDFiif.SELECT_, CDFiie.gENTRY_, maxEntry + 1, $

IDL> CDFiif.PUT_, CDFiie.gENTRY_DATA_, CDFdt.CDF_CHAR, 14L, $

IDL> 'Useless update', $

IDL> CDFiif.NULL_)

IDL> status = CDFerror (status, text)

138 APPENDIX B. IDL SUPPORT

IDL> print, text

CDF_OK: Function completed successfully.

IDL> status = CDFclose (id)

IDL> status = CDFerror (status, text)

IDL> print,text

CDF_OK: Function completed successfully.

As you can see, checking the return status from each call to the CDF library can be fairly tedious. A
procedure such as the following could be used to ease status code checking. . .

pro checkstatus, status

@cdf0x

if (status lt CDFic.CDF_OK) then begin

statusT = CDFerror (status, text)

print, text

endif

return

end

The �rst part of the sample IDL session could then be as follows. . .

IDL> .run checkstatus

IDL> @cdf0x

IDL> status = CDFlib (CDFiif.OPEN_, CDFiix.CDF_, 'yrdy3', id, $

IDL> CDFiif.NULL_)

IDL> checkstatus, status

NO_SUCH_CDF: The specified CDF does not exist.

IDL> checkstatus, CDFlib (CDFiif.OPEN_, CDFiix.CDF_, 'test2', id, $

IDL> CDFiif.NULL_)

.

.

.

As you can see, a call to a CDF function can be embedded in a call to checkstatus.

Appendix C

Status Codes

C.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include
�les contain the numerical values (constants) for each of the status codes (and for any other constants referred
to in the explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF error (for
Fortran) can be used within a program to inquire the explanation text for a given status code. The Internal
Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as
follows:

Informational Indicates success but provides some additional information that may be of in-
terest to an application.

Warning Indicates that the function completed but possibly not as expected.
Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:

Error codes < CDF WARN < Warning codes < CDF OK < Informational codes

CDF OK indicates an unquali�ed success (it should be the most commonly returned status code). CDF WARN

is simply used to distinguish between warning and error status codes.

C.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is
considered informational, a warning, or an error is also indicated.

ATTR EXISTS Named attribute already exists | cannot create or rename.

139

140 APPENDIX C. STATUS CODES

Each attribute in a CDF must have a unique name. Note that
trailing blanks are ignored by the CDF library when comparing
attribute names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN characters.
The attribute was created but with a truncated name. [Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was spec-
i�ed. For RV variables the number must be one or greater. For
NRV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/unde�ned argument was passed. Check that all ar-
guments are properly declared and initialized. [Error]

BAD ATTR NAME Illegal attribute name speci�ed. Attribute names must contain
at least one character, and each character must be printable.
[Error]

BAD ATTR NUM Illegal attribute number speci�ed. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD BLOCKING FACTOR1 An illegal blocking factor was speci�ed. Blocking factors must
be at least zero (0). [Error]

BAD CACHESIZE An illegal number of cache bu�ers was speci�ed. The value
must be at least zero (0). [Error]

BAD CDF EXTENSION An illegal �le extension was speci�ed for a CDF. In general, do
not specify an extension except possibly for a single-�le CDF
which has been renamed with a di�erent �le extension or no
�le extension. [Error]

BAD CDF ID CDF identi�er is unknown or invalid. The CDF identi�er spec-
i�ed is not for a currently open CDF. [Error]

BAD CDF NAME Illegal CDF name speci�ed. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

BAD CDFSTATUS Unknown CDF status code received. The status code speci�ed
is not used by the CDF library. [Error]

BAD COMPRESSION PARM An illegal compression parameter was speci�ed. [Error]

BAD DATA TYPE An unknown data type was speci�ed or encountered. The
CDF data types are de�ned in cdf.h for C applications and in
cdf.inc for Fortran applications. [Error]

BAD DECODING An unknown decoding was speci�ed. The CDF decodings are
de�ned in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD DIM COUNT Illegal dimension count speci�ed. A dimension count must be
at least one (1) and not greater than the size of the dimension.

1The status code BAD BLOCKING FACTOR was previously named BAD EXTEND RECS.

C.2. STATUS CODES AND MESSAGES 141

[Error]

BAD DIM INDEX One or more dimension index is out of range. A valid value
must be speci�ed regardless of the dimension variance. Note
also that the combination of dimension index, count, and in-
terval must not specify an element beyond the end of the di-
mension. [Error]

BAD DIM INTERVAL Illegal dimension interval speci�ed. Dimension intervals must
be at least one (1). [Error]

BAD DIM SIZE Illegal dimension size speci�ed. A dimension size must be at
least one (1). [Error]

BAD ENCODING Unknown data encoding speci�ed. The CDF encodings are
de�ned in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD ENTRY NUM Illegal attribute entry number speci�ed. Entry numbers must
be at least zero (0) for C applications and at least one (1) for
Fortran applications. [Error]

BAD FNC OR ITEM The speci�ed function or item is illegal. Check that the proper
number of arguments are speci�ed for each operation being
performed. Also make sure that NULL is speci�ed as the last
operation. [Error]

BAD FORMAT Unknown format speci�ed. The CDF formats are de�ned in
cdf.h for C applications and in cdf.inc for Fortran applica-
tions. [Error]

BAD INITIAL RECS An illegal number of records to initially write has been spec-
i�ed. The number of initial records must be at least one (1).
[Error]

BAD MAJORITY Unknown variable majority speci�ed. The CDF variable ma-
jorities are de�ned in cdf.h for C applications and in cdf.inc

for Fortran applications. [Error]

BAD MALLOC Unable to allocate dynamic memory | system limit reached.
Contact CDF User Support if this error occurs. [Error]

BAD NEGtoPOSfp0 MODE An illegal -0.0 to 0.0 mode was speci�ed. The -0.0 to 0.0

modes are de�ned in cdf.h for C applications and in cdf.inc

for Fortran applications. [Error]

BAD NUM DIMS The number of dimensions speci�ed is out of the allowed range.
Zero (0) through CDF MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

BAD NUM ELEMS The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be
one (1). [Error]

BAD NUM VARS Illegal number of variables in a record access operation. [Error]

142 APPENDIX C. STATUS CODES

BAD READONLY MODE Illegal read-only mode speci�ed. The CDF read-only modes
are de�ned in cdf.h for C applications and in cdf.inc for
Fortran applications. [Error]

BAD REC COUNT Illegal record count speci�ed. A record count must be at least
one (1). [Error]

BAD REC INTERVAL Illegal record interval speci�ed. A record interval must be at
least one (1). [Error]

BAD REC NUM Record number is out of range. Record numbers must be at
least zero (0) for C applications and at least one (1) for For-
tran applications. Note that a valid value must be speci�ed
regardless of the record variance. [Error]

BAD SCOPE Unknown attribute scope speci�ed. The attribute scopes are
de�ned in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD SCRATCH DIR An illegal scratch directory was speci�ed. The scratch direc-
tory must be writeable and accessable (if a relative path was
speci�ed) from the directory in which the application has been
executed. [Error]

BAD SPARSEARRAYS PARM An illegal sparse arrays parameter was speci�ed. [Error]

BAD VAR NAME Illegal variable name speci�ed. Variable names must contain
at least one character and each character must be printable.
[Error]

BAD VAR NUM Illegal variable number speci�ed. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

BAD zMODE Illegal zMode speci�ed. The CDF zModes are de�ned in cdf.h

for C applications and in cdf.inc for Fortran applications.
[Error]

CANNOT ALLOCATE RECORDS Records cannot be allocated for the given type of variable (e.g.,
a compressed variable). [Error]

CANNOT CHANGE Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable
value (including a pad value) or an attribute entry
has been written.

2. Changing a CDF's format after a variable has been
created or if a compressed single-�le CDF.

3. Changing a CDF's variable majority after a vari-
able value (excluding a pad value) has been writ-
ten.

4. Changing a variable's data speci�cation after a
value (including the pad value) has been written to

C.2. STATUS CODES AND MESSAGES 143

that variable or after records have been allocated
for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that
variable or after records have been allocated for
that variable.

6. Changing a variable's dimension variances after a
value (excluding the pad value) has been written
to that variable or after records have been allo-
cated for that variable.

7. Writing \initial" records to a variable after a value
(excluding the pad value) has already been written
to that variable.

8. Changing a variable's blocking factor when a com-
pressed variable and a value (excluding the pad
value) has been written or when a variable with
sparse records and a value has been accessed.

9. Changing an attribute entry's data speci�cation
where the new speci�cation is not equivalent to
the old speci�cation.

CANNOT COMPRESS The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-�le format. For variables, this
occurs if the variable is in a multi-�le CDF, values have been
written to the variable, or if sparse arrays have already been
speci�ed for the variable. [Error]

CANNOT SPARSEARRAYS Sparse arrays cannot be speci�ed for the variable. This occurs
if the variable is in a multi-�le CDF, values have been written
to the variable, records have been allocated for the variable,
or if compression has already been speci�ed for the variable.
[Error]

CANNOT SPARSERECORDS Sparse records cannot be speci�ed for the variable. This occurs
if the variable is in a multi-�le CDF, values have been written
to the variable, or records have been allocated for the variable.
[Error]

CDF CLOSE ERROR Error detected while trying to close CDF. Check that su�cient
disk space exists for the dotCDF �le and that it has not been
corrupted. [Error]

CDF CREATE ERROR Cannot create the CDF speci�ed | error from �le system.
Make sure sure that su�cient privilege exists to create the
dotCDF �le in the disk/directory location speci�ed and that
an open �le quota has not already been reached. [Error]

CDF DELETE ERROR Cannot delete the CDF speci�ed | error from �le system.
Unsu�cient privileges exist the delete the CDF �le(s). [Error]

144 APPENDIX C. STATUS CODES

CDF EXISTS The CDF named already exists | cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

CDF INTERNAL ERROR An unexpected condition has occurred in the CDF library. Re-
port this error to CDFsupport. [Error]

CDF NAME TRUNC CDF pathname truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

CDF OK Function completed successfully.

CDF OPEN ERROR Cannot open the CDF speci�ed | error from �le system.
Check that the dotCDF �le is not corrupted and that su�-
cient privilege exists to open it. Also check that an open �le
quota has not already been reached. [Error]

CDF READ ERROR Failed to read the CDF �le | error from �le system. Check
that the dotCDF �le is not corrupted. [Error]

CDF WRITE ERROR Failed to write the CDF �le | error from �le system. Check
that the dotCDF �le is not corrupted. [Error]

COMPRESSION ERROR An error occured while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

CORRUPTED V2 CDF This Version 2 CDF is corrupted. An error has been detected
in the CDF's control information. If the CDF �le(s) are known
to be valid, please contact CDF User Support. [Error]

DECOMPRESSION ERROR An error occured while decompressing a CDF or block of vari-
able records. The most likely cause is a corrupted dotCDF �le.
[Error]

DID NOT COMPRESS For a compressed variable, a block of records did not compress
to smaller than their uncompressed size. They have been stored
uncompressed. This can result if the blocking factor is set
too low or if the characteristics of the data are such that the
compression algorithm choosen is unsuitable. [Informational]

EMPTY COMPRESSED CDF The compressed CDF being opened is empty. This will result if
a program which was creating/modifying the CDF abnormally
terminated. [Error]

END OF VAR The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable
is not allowed (when performing sequential access). [Error]

FORCED PARAMETER A speci�ed parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

PC OVERFLOW An operation involving a bu�er greater than 64k bytes in size
has been speci�ed. [Error]

ILLEGAL FOR SCOPE The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes | not rEntries
or zEntries. [Error]

C.2. STATUS CODES AND MESSAGES 145

ILLEGAL IN zMODE The attempted operation is illegal while in zMode. Most op-
erations involving rVariables or rEntries will be illegal. [Error]

ILLEGAL ON V1 CDF The speci�ed operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

MULTI FILE FORMAT The speci�ed operation is not applicable to CDFs with the
multi-�le format. For example, it does not make sense to in-
quire indexing statistics for a variable in a multi-�le CDF (in-
dexing is only used in single-�le CDFs). [Informational]

NA FOR VARIABLE The attempted operation is not applicable to the given vari-
able. [Warning]

NEGATIVE FP ZERO One or more of the values read/written are -0.0 (an ille-
gal value on VAXes and DEC Alphas running OpenVMS).
[Warning]

NO ATTR SELECTED An attribute has not yet been selected. First select the at-
tribute on which to perform the operation. [Error]

NO CDF SELECTED A CDF has not yet been selected. First select the CDF on
which to perform the operation. [Error]

NO DELETE ACCESS Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF �le(s). [Error]

NO ENTRY SELECTED An attribute entry has not yet been selected. First select the
entry number on which to perform the operation. [Error]

NO MORE ACCESS Further access to the CDF is not allowed because of a severe
error. If the CDF was being modi�ed, an attempt was made to
save the changes made prior to the severe error. In any event,
the CDF should still be closed. [Error]

NO PADVALUE SPECIFIED A pad value has not yet been speci�ed. The default pad value
is currently being used for the variable. The default pad value
was returned. [Informational]

NO STATUS SELECTED A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

NO SUCH ATTR The named attribute was not found. Note that attribute names
are case-sensitive. [Error]

NO SUCH CDF The speci�ed CDF does not exist. Check that the pathname
speci�ed is correct. [Error]

NO SUCH ENTRY No such entry for speci�ed attribute. [Error]

NO SUCH RECORD The speci�ed record does not exist for the given variable. [Error]

NO SUCH VAR The named variable was not found. Note that variable names
are case-sensitive. [Error]

NO VAR SELECTED A variable has not yet been selected. First select the variable
on which to perform the operation. [Error]

146 APPENDIX C. STATUS CODES

NO VARS IN CDF This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

NO WRITE ACCESS Write access is not allowed on the CDF �le(s). Make sure
that the CDF �le(s) have the proper �le system privileges and
ownership. [Error]

NOT A CDF Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the speci�ed �le is a CDF that
should be readable by the CDF distribution being used. CDF
is backward compatible but not forward compatible. [Error]

PRECEEDING RECORDS ALLOCATED Because of the type of variable, records preceeding the range
of records being allocated were automatically allocated as well.
[Informational]

READ ONLY DISTRIBUTION Your CDF distribution has been built to allow only read access
to CDFs. Check with your system manager if you require write
access. [Error]

READ ONLY MODE The CDF is in read-only mode | modi�cations are not al-
lowed. [Error]

SCRATCH CREATE ERROR Cannot create a scratch �le | error from �le system. If a
scratch directory has been speci�ed, ensure that it is writable.
[Error]

SCRATCH DELETE ERROR Cannot delete a scratch �le | error from �le system. [Error]

SCRATCH READ ERROR Cannot read from a scratch �le | error from �le system.
[Error]

SCRATCH WRITE ERROR Cannot write to a scratch �le | error from �le system. [Error]

SINGLE FILE FORMAT The speci�ed operation is not applicable to CDFs with the
single-�le format. For example, it does not make sense to close
a variable in a single-�le CDF. [Informational]

SOME ALREADY ALLOCATED Some of the records being allocated were already allocated.
[Informational]

TOO MANY PARMS A type of sparse arrays or compression was encountered hav-
ing too many parameters. This could be causes by a corrupted
CDF or if the CDF was created/modi�ed by a CDF distribu-
tion more recent than the one being used. [Error]

TOO MANY VARS Amulti-�le CDF on a PC may contain only a limited number of
variables because of the 8.3 �le naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

UNKNOWN COMPRESSION An unknown type of compression was speci�ed or encountered.
[Error]

UNKNOWN SPARSENESS An unknown type of sparseness was speci�ed or encountered.
[Error]

C.2. STATUS CODES AND MESSAGES 147

UNSUPPORTED OPERATION The attempted operation is not supported at this time. [Error]

VAR ALREADY CLOSED The speci�ed variable is already closed. [Informational]

VAR CLOSE ERROR Error detected while trying to close variable �le. Check that
su�cient disk space exists for the variable �le and that it has
not been corrupted. [Error]

VAR CREATE ERROR An error occurred while creating a variable �le in a multi-�le
CDF. Check that a �le quota has not been reached. [Error]

VAR DELETE ERROR An error occurred while deleting a variable �le in a multi-�le
CDF. Check that su�cient privilege exist to delete the CDF
�les. [Error]

VAR EXISTS Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

VAR NAME TRUNC Variable name truncated to CDF VAR NAME LEN characters. The
variable was created but with a truncated name. [Warning]

VAR OPEN ERROR An error occurred while opening variable �le. Check that suf-
�cient privilege exists to open the variable �le. Also make sure
that the associated variable �le exists. [Error]

VAR READ ERROR Failed to read variable as requested | error from �le system.
Check that the associated �le is not corrupted. [Error]

VAR WRITE ERROR Failed to write variable as requested | error from �le system.
Check that the associated �le is not corrupted. [Error]

VIRTUAL RECORD DATA One or more of the records are virtual (never actually written
to the CDF). Virtual records do not physically exist in the
CDF �le(s) but are part of the conceptual view of the data
provided by the CDF library. Virtual records are described in
the Concepts chapter in the CDF User's Guide. [Informational]

148 APPENDIX C. STATUS CODES

Appendix D

Release Notes

D.1 Introduction

This appendix should provide you with all of the information you need to know to begin using CDF V2.6
assuming that you are already familar with CDF V2.5. For additional information contact CDF User
Support.

D.2 Supported Systems

CDF V2.6 is currently supported on the following computers/operating systems.

1. VAX (OpenVMS & POSIX shell)

2. Sun (SunOS & SOLARIS)

3. DECstation (ULTRIX)

4. Silicon Graphics Iris & Power Series (IRIX)

5. IBM RS6000 series (AIX)

6. HP 9000 series (HP-UX)

7. PC (MS-DOS, Windows 3.x, Windows NT/95, Linux, & QNX)

8. NeXT (Mach)

9. DEC Alpha (OSF/1 & OpenVMS)

10. Macintosh (MacOS 7.0)

149

150 APPENDIX D. RELEASE NOTES

D.3 Changes for CDF V2.6

A number of changes have been made for the CDF V2.6 distribution. . .

1. Compression support has been added to the CDF library. Several compression algorithms are available
and may be applied to the entire CDF or to individual variables in a CDF. The available compression
algorithms include run-length encoding of zeros, Hu�man, adaptive Hu�man, and Gnu's ZIP.

2. Support for sparse records has been added for variables. When a variable is speci�ed as having sparse
records, only those records actually written to the variable will be physically stored in the CDF. This
allows gaps of missing records to exist rather than physically writing those records with some sort of
pad value.

3. A consequence of the compression and sparse records capability of CDF V2.6 is that previous CDF
releases will not be able to read CDFs created or modi�ed by CDF V2.6.

4. Individual records may now be deleted from a variable in a CDF.

5. Individual blocks of records may now be allocated as needed for uncompressed variables. Previously,
records could only be allocated once and had to start at the �rst record for a variable.

6. A more e�cient hierarchical indexing scheme has been implemented in an e�ort to optimize the access to
sparse and/or compressed records of a variable. This indexing scheme is transparent to an application.

7. The \cache" quali�er used with many of the CDF toolkit programs now allows the speci�cation of
the cache sizes to be used for the scratch �les maintained by the CDF library. The CDF library uses
scratch �les in support of compression and sparse records. The directory in which these scratch �les
are created may be speci�ed by an application program via the Internal Interface or with the logical
name CDF$TMP (on VMS systems) and environment variable CDF TMP (on UNIX and MS-DOS systems).

8. The functionality of CDFlist and CDFwalk has been added to CDFexport. CDFlist and CDFwalk
will remain in the CDF distribution but are no longer supported. The use of CDFexport is strongly
recommended.

9. Compression and sparseness quali�ers have been added to CDFconvert which allow the compression
of a CDF or its variables and the sparseness of its variables to be changed during a conversion.

10. Compression and sparseness display/selection has been added to the CDFbrowse/CDFedit and CDF-
export toolkit programs.

11. The Internal Interface can be used to inquire the number of records written to a variable having sparse
records (in addition to the maximum record number written). The existence of individual records may
also be determined.

12. A zMode quali�er has been added to SkeletonCDF which allows zVariables to be created from the
rVariables section of a skeleton table.

13. An option has been added to CDFbrowse/CDFedit with allows the character string entries of a gAt-
tribute to be displayed/edited as if they were a text �le.

14. Skeleton tables can now contain values for record-variant (RV) variables.

15. 4-byte integers are now the default when using Symantec's Think C on the Macintosh. This was
necessary to support some of the compression routines in the CDF library.

D.3. CHANGES FOR CDF V2.6 151

16. For CDF's IDL interface, a new way to include the needed CDF parameter constants has been added.
Entering @cdf0x.pro on the IDL command line (or in a function/procedure) causes a set of structure
variables to be created and initialized with the CDF parameter constants.

17. The toolkit programs are now installed with their full names on UNIX systems.

18. CDFskeleton was renamed SkeletonCDF. SkeletonTable creates a skeleton table. SkeletonCDF creates
a (skeleton) CDF.

19. CDFedit in browse-only mode (CDFbrowse) was modi�ed to look more like a browser.

20. A variable's \extend records" now referred to as it's \blocking factor."

21. The \de�nitions" �les used on UNIX systems are now installed in the <path>/bin directory. Also, the
online help �les are now installed in the <path>/lib/cdf/help directory. The location of <path> is
speci�ed by the system administrator who installs the CDF distribution.

22. An \about" quali�er (or selection) was added to all CDF toolkit programs which allows the inquiry of
the CDF distribution from which the program originated.

23. Routines were added to the CDF library which allow CDF EPOCH values to be encoded for display using
custom formats speci�ed by the user.

24. The CDF V2.6 distribution was ported to QNX (a avor of UNIX for the PC).

25. The CDF V2.6 distribution was ported to Windows NT/95.

152 APPENDIX D. RELEASE NOTES

Appendix E

Glossary

AHUFF The Adaptive Hu�man compression algorithm.

allocated records For uncompressed variables in a single-�le CDF it is possible
for an application to allocate records before they are written.
This has the advantage of reducing the indexing overhead in the
dotCDF �le which will improve performance when accessing a
variable. An application would generally then write to the
records that were allocated.

attribute A CDF object with which entries of metadata are associated.

big-endian The byte ordering in which the most signi�cant byte (MSB) is
stored in the lowest memory location.

blocking factor For a standard variable (in a single-�le CDF), the blocking
factor is the minimum number of records actually allocated
when a new record is written. More records may be allocated
than are actually needed in order to keep the variable's records
as contiguous as possible (with the assumption that the records
will eventually be written).

For a compressed variable in a single-�le CDF, the blocking fac-
tor is the maximum number of records per compressed block.

For an uncompressed variable having sparse records in a single-
�le CDF, the blocking factor is the number of records allocated
in the staging scratch �le. For this type of variable the staging
scratch �le is used to optimize the indexing in the dotCDF �le
by storing sequential records contiguously when possible.

Blocking factors are not applicable to variables in multi-�le
CDFs.

caching The method used by the CDF library to improve performance
when accessing a �le. An attempt is made to keep commonly
accessed blocks of the �le in memory rather than repeatedly
reading them from or writing them to disk.

153

154 APPENDIX E. GLOSSARY

CDF This term is used in more than one way. . .

1. The actual �les that contain your data/metadata.
For example: The CDF library must be used to
create a \CDF."

2. The software distribution containing the CDF li-
brary, include �les, and toolkit. For example: We
like using \CDF" to store our data.

CDF base name The pathname of a CDF minus the extension (or extensions if
a multi-�le CDF).

CDF distribution The directory of software consisting of the CDF library, include
�les, and toolkit.

CDF library The software library that is used to access a CDF.

CDF toolkit A set of utility programs which ease the creation, modi�cation,
and veri�cation of CDFs.

CDFbrowse A read-only version of CDFedit.

CDFedit A CDF toolkit program that allows the display and modi�ca-
tion of a CDF's contents.

CDFexport A CDF toolkit program that allows the (possibly �ltered) con-
tents of a CDF to be exported to the terminal screen, a text
�le, or another CDF.

CDFstats A CDF toolkit program that generates a report containing var-
ious statistics about a CDF's variables.

CDFcompare A CDF toolkit program that reports any di�erences between
two CDFs.

CDFconvert A CDF toolkit program that allows various overall properties
of a CDF to be changed (in a newly created CDF).

CDFinquire A CDF toolkit program that displays the version of the CDF
distribution being used, many of the con�gurable parameters,
and the default CDF toolkit quali�ers/options.

CDF OK A completion status code indicating unquali�ed success.

cdf.h An include �le used in C applications.

cdf.inc An include �le used in Fortran applications.

cdfmsf.inc An include �le used in Microsoft Fortran applications.

column-major The variable majority where the �rst index of a multidimen-
sional array of values increments the fastest.

compression The process of encoding a group of bytes into a smaller group
of bytes, storing the smaller group of bytes, and then decod-
ing the smaller group of bytes back to the original group of
bytes. CDF allows both a CDF and/or individual variables to

155

be compressed when stored.

conceptual view The way that values along a dimension having a variance of
NOVARY are made to appear as if they do actually exist (only
one value is actually physically stored). This also applies to
records beyond the last record actually stored. The conceptual
view of a variable consists of \virtual" records and values (in
addition to the physical records and values actually stored).

current When the Internal Interface is used, current objects/states are
those items a�ected when an operation is performed. For ex-
ample, a current CDF is selected and then any operation per-
formed involving a CDF is performed on that CDF (until a
di�erent current CDF is selected).

data speci�cation For a variable or attribute entry the data type and number of
elements of that data.

data type For a variable or attribute entry, the type of data being stored
(e.g., integer, oating-point, character).

decoding The integer/oating-point representation of data values passed
to an application by the CDF library as they are read from
a CDF. This is independent of the way the data values are
physically stored in the CDF.

dimension variance The property of a variable that speci�es whether or not the
values along a dimension change or stay the same.

dimensionality The number of dimensions and the dimension sizes for the
rVariables or a zVariable.

dotCDF �le A �le having an extension of .cdf (or .CDF if the operating
system being used prefers uppercase). For a single-�le CDF
this will be the only �le. For a multi-�le CDF this �le will
exist along with zero or more variable �les (depending on the
number of variables in the CDF).

encoding The integer/oating-point representation of the data values
physically stored in a CDF.

entry A CDF object in which metadata is stored. An entry is asso-
ciated with an attribute.

error code A status code indicating that a fatal condition was encoun-
tered. The operation was aborted.

format In reference to a CDF, the way in which �les are used to store
the CDF's control/data/metadata. This may be single-�le or
multi-�le.

full-physical record A variable record consisting of values exactly as physically
stored in the CDF.

gAttribute A global scoped attribute.

gEntry An entry for a gAttribute.

156 APPENDIX E. GLOSSARY

global scope Global scope indicates that an attribute describes some prop-
erty of the entire CDF.

GZIP The Gnu ZIP compression algorithm.

host decoding The decoding of the computer currently being used.

host encoding The encoding of the computer currently being used.

HUFF The Hu�man compression algorithm.

hyper access A variable access method in which multiple records/values are
read/written for a variable.

IDL Interface A set of functions callable from within IDL (Interactive Data
Language) that allow access to CDFs. The CDF distribution
contains an IDL interface in addition to the CDF interface built
into IDL by Research Systems, Inc. (RSI | the distributors
of IDL).

IEEE 754 The oating-point representation of XDR.

include �le A �le, included by a C or Fortran application, that contains
constants recognized by the CDF library pertaining to various
aspects of CDF objects/states.

indexing The method used in a single-�le CDF to keep track of where
each variable's records are located.

informational code A status code indicating success but providing some additional
information that may be of interest.

Internal Interface A set of routines in the CDF library callable from C and For-
tran applications that provide all types of access to CDFs.

item When the Internal Interface is used, an object or state on which
a function is performed.

libcdf.a The CDF library on UNIX systems.

LIBCDF.LIB The CDF library on MS-DOS systems.

LIBCDF.OLB The CDF library on VMS and OpenVMS systems.

little-endian The byte ordering in which the least signi�cant byte (LSB) is
stored in the lowest memory location.

majority The order in which the values of a multidimensional array are
stored. This may be either row-major or column-major.

metadata Data about data. A CDF stores metadata using attributes and
attribute entries.

monotonicity The property of a variable that speci�es whether or not that
variable's values increment or decrement (or neither) along a
dimension or from record to record.

multi-�le A CDF format. Multi-�le CDFs consist of one �le for con-
trol/metadata and one �le per variable of data.

157

multiple variable access A variable access method in which one full-physical record is
read/written for each of one or more variables.

network encoding The encoding that uses the XDR representation.

NOVARY A record/dimension variance indicating that the values do not
change from record to record or along a dimension.

NRV variable Non-record variant variable. A variable whose values do not
change from record to record (a record variance of NOVARY).

NSSDC National Space Science Data Center.

number of elements For a variable the number of instances of the data type at each
value. For an attribute entry the number of instances of the
data type for that entry.

object When the Internal Interface is used, an item that exists and
may be accessed/manipulated (e.g., a CDF or variable).

operation When the Internal Interface is used, a function performed on
an item (e.g., creating or writing).

pad value A value written to a variable by the CDF library in those cases
where a physical record must be written but not all of its values
have been speci�ed by an application. For example, when a
single value is written to a new record, all of the other values
are written using the pad value.

physical record A variable record actually stored in a CDF.

physical value A variable value actually stored in a CDF.

read-only A mode of the CDF library in which modi�cations to a CDF
are not allowed.

record variance The property of a variable that speci�es whether or not its
values change from record to record.

reserve percentage For a compressed variable, the reserve percentage speci�es how
much additional space to allocate in the dotCDF �le when a
compressed block of records is initially written. A value of 0
(zero) causes no reserve space to be allocated. Values from 1

to 100 cause at least that percentage of the uncompressed size
to be allocated. Values greater than 100 cause that percentage
of the compressed size to be allocated (but not exceeding the
uncompressed size).

rEntry An entry for a vAttribute corresponding to an rVariable.

RLE A run-length encoding compression algorithm. Currently, the
only type of RLE compression supported is the run-length en-
coding of bytes containing zero.

row-major The variable majority where the last index of a multidimen-
sional array of values increments the fastest.

RV variable Record variant variable. A variable whose values change from

158 APPENDIX E. GLOSSARY

record to record (a record variance of VARY).

rVariable \R" variable. A CDF object in which data values are stored.
All rVariables have the same dimensionality.

scratch directory The directory in which the CDF library creates scratch �les.
This directory may be speci�ed by a user or an application.

scratch �les Temporary �les used by the CDF library to minimize core
memory usage.

scope The intended use for an attribute. This may be global scope
or variable scope.

sequential access A variable access method in which values are read/written in
the physical order in which they are stored in the CDF.

single-�le A CDF format. Single-�le CDFs are entirely contained within
one �le.

single value access A variable access method in which exactly one value is read/written
for a variable.

skeleton CDF A CDF consisting of only control, metadata, and NRV variable
values.

skeleton table A text �le containing the control, metadata, and traditionally
only the NRV variable values of a CDF. RV variable values
may now also be included in a skeleton table. A skeleton ta-
ble is read by the SkeletonCDF toolkit program which then
creates the corresponding skeleton CDF (or complete CDF if
the RV variable values also existed in the skeleton table). The
SkeletonTable toolkit program can be used to create a skeleton
table from a CDF.

SkeletonCDF A CDF toolkit program which creates a skeleton CDF based
on a skeleton table. A complete CDF may also be created if
the skeleton table contained RV variable values in addition to
NRV variable values.

SkeletonTable A CDF toolkit program which creates a skeleton table from a
CDF.

sparse arrays A property assigned to a variable indicating that only those
values written to a record should be stored. Because the values
of a variable record can be written in any order this allows gaps
of missing values to occur.

sparse records A property assigned to a variable indicating that only those
records written to the variable should be stored. Because the
records of a variable can be written in any order this allows
gaps of missing records to occur.

Standard Interface A set of routines in the CDF library callable from C and For-
tran applications that provide access to a commonly used sub-
set of the capabilities of the Internal Interface. This interface

159

was de�ned with the release of CDF V2.0 and has not changed
since. New features since that time are available only through
the Internal Interface (e.g., zVariables and zMode).

standard variable A variable in a single-�le CDF that is not compressed nor has
sparse records or arrays.

state When the Internal Interface is used, a property pertaining to an
object (e.g., a CDF's format or variable's data speci�cation).

status code The result of a CDF function/subroutine call. CDF OK indicates
unquali�ed success.

status handler A function/subroutine that acts upon a status code received
from the CDF library.

variable �le In a multi-�le CDF, these are the �les containing the data
values for each variable (in one �le per variable). These �les
are named using the CDF's base name with extensions of `.v0',
`.v1', and so on for rVariables and `.z0', `.z1', and so on for
zVariables.

variable scope Variable scope indicates that an attribute describes some prop-
erty of each variable.

variance (dimension) The property of a variable that speci�es whether or not the
values along a dimension change or stay the same.

variance (record) The property of a variable that speci�es whether or not its
values change from record to record.

VARY A record/dimension variance indicating that the values change
from record to record or along a dimension.

vAttribute A variable scoped attribute.

virtual record A variable record that is not actually stored in a CDF but
does appear in the conceptual view of the CDF. Virtual records
would be those records beyond the �rst record of an NRV vari-
able and those records beyond the last record actually written
to an RV variable.

virtual value A variable value this is not actually stored in a CDF but does
appear in the conceptual view of the CDF. Virtual values would
be those values beyond the �rst value of a dimension whose
variance is NOVARY.

warning code A status code indicating that the operation did complete but
probably not as expected.

XDR External Data Representation. An integer/oating-point rep-
resentation using big-endian byte ordering and the IEEE 754
oating-point representation.

zEntry An entry for a vAttribute corresponding to a zVariable.

zMode A mode of the CDF library in which rVariables are made to

appear as zVariables (and rEntries appear as zEntries).

zVariable \Z" variable. A CDF object in which data values are stored.
zVariables can have dimensionalities that are di�erent than
those of the rVariables (and each other).

160

Index

-0.0 to 0.0 mode, 30

Adaptive Hu�man compression, 66
allocated records, 49
assumed scope, 61
attributes, 12, 60

creating, 60
deleting, 62
entries, 12, 62

accessing, 62
data speci�cation, 63

data type, 63
number of elements, 63

deleting, 63
gEntries, 12, 62
numbering, 62
rEntries, 12, 62
zEntries, 12, 62

FILLVAL, 70, 93
FORMAT, 71, 93, 99
gAttributes, 12, 61
MONOTON, 70, 93
naming, 41, 61

case sensitivity, 61
trailing blanks, 61

numbering, 61, 90
assigning, 61

SCALEMAX, 70, 93
SCALEMIN, 70, 93
scopes, 61

assumed, 61
converting, 62
correcting, 62
occurring, 61

global, 61
purpose, 61
restrictions, 61
variable, 61

special, 70
usage, 71, 75, 93, 99

VALIDMAX, 70, 93
VALIDMIN, 70, 93
vAttributes, 12, 61

big-endian, 38
blocking factor, 50

caching scheme, �les, 32
CDF

de�ned, 1
CDF distribution, 108
CDF library, 2, 27

caching scheme, 32
selecting, 73, 80, 87, 91, 96, 103, 106

interfaces, 13, 27
limits, 31

open CDFs, 31
modes, 29

-0.0 to 0.0, 30
decoding, 39

performance considerations, 40
read-only, 29, 71
zMode, 29, 72, 79, 87, 90, 96, 102

example, 29
selecting, 30
zMode/1, 29
zMode/2, 29

scratch �les, 31
CDF toolkit, 13, 67

command line syntax, 67
default settings, 68, 70
executable names, 68, 76, 83, 89, 100, 105, 108
Macintosh user interface, 68

CDF ATTR NAME LEN, 61
CDF EPOCH, 64
CDF error, 139
CDF VAR NAME LEN, 43
CDFbrowse, 71, 111
CDFcompare, 88

executing, 89
output, 92

CDFconvert, 36, 39, 82
executing, 82
output, 88

CDFdir, 109
executing, 109
output, 110

CDFedit, 71
executing, 71
interaction with, 74
window types, 74

CDFerror, 139
CDFexport, 75

executing, 75

161

interaction with, 81
CDFinquire, 107

executing, 108
output, 109

CDFs
accessing, 29, 33
browsing, 71
closing, 34
comparing, 88
compression, 6, 41

algorithms, 65
changing, 82

converting, 82
copyright notice, 0
creating, 33
deleting, 34, 85, 106
encoding, 6, 36

changing, 36, 82
equivalent, 38
host, 37
network, 37
performance considerations, 39

�les
directory listing, 109
extensions, 35{36

�ltering, 75
format, 2, 35

changing, 35, 82
default, 35
multi-�le, 36
performance considerations, 36
single-�le, 35

inquiring, 99
limits, 41
listing, 75
modifying, 29, 71, 95
naming, 34, 41, 105

trailing blanks, 34
wildcards, 67

opening, 33
skeleton, 84
statistics for, 92
subsetting, 75
verifying, 88

CDFstats, 92
executing, 94
output, 97

compression, 6
algorithms, 7, 65
CDF, 6, 41
variable, 7, 52

computers, supported, 149
conceptual view, 2

data speci�cation
attribute entry, 63
variable, 44

data types, 63
character, 44, 64
EPOCH, 64
equivalent, 44, 65
oating point, 64

-0.0, 64, 73, 79, 87, 91, 96, 102, 106
inquiring size, 63
integer, 63
non-character, 44
number of elements, 64

decoding, CDF, 39
de�nitions �le, 68
dimensionality, variable, 44
dimensions

limit, 41

encoding, CDF, 36
EPOCH, 64

syntax, 64
examples

C applications
program, 15

conceptual view, 9
data set, at, 9
Fortran applications

program, 22
physical view, 11
skeleton table, 20, 126

FILLVAL attribute, 70, 93, 106
FORMAT attribute, 70{72, 93, 95, 99, 102
format, CDF, 35

Gnu's ZIP compression, 66

host decoding, 40
host encoding, 37
Hu�man compression, 65
hyper access, variable, 55

IDL
CDF's interface, 28, 131

IEEE 754, 30, 38, 64
indexing, variable records, 35
initial records, 49

162

interfaces, 13, 27
IDL, 28, 131
Internal, 14, 27
Standard, 14, 27

Internal Interface, 14, 27

limits, 31, 41
dimensions, 41
open CDFs, 31
variable names, 41

little-endian, 38

majority
variable, 53

MONOTON attribute, 70, 93
multi-�le format, 36
multiple variable access, 58

network encoding, 37

operating systems, supported, 149

pad values, variable, 59
performance considerations

decoding, 40
encoding, 39
format, 36
majority, 54

quali�er
special, 70

read-only mode, 29
release notes, 149
reserve percentage, 52
run-length encoding compression, 65

SCALEMAX attribute, 70, 93
SCALEMIN attribute, 70, 93
scope, attribute, 61
scratch �les, 31
sequential access, variable, 57
single-�le format, 35
skeleton CDF, 104
skeleton table, 35, 99, 104

creating, 99, 107
example, 126
�le extension, 107
format, 113

SkeletonCDF, 35{36, 113
SkeletonCDF, 99, 104

executing, 104

SkeletonTable, 99, 107, 113
executing, 99
output, 104

sparseness, 7
arrays, 7, 52
records, 7, 48

Standard Interface, 14, 27
standard variable, 42
status codes, 139

constants, 139
displaying, 73, 79, 87, 91, 96, 102, 106
error, 139
explanation text, 139

inquiring, 139
informational, 139
interpreting, 139
warning, 139

trailing blanks
attribute names, 61
CDF pathnames, 34
variable names, 43

VALIDMAX, 93
VALIDMAX attribute, 70
VALIDMIN attribute, 70, 93
variables, 2, 8, 41

accessing, 8, 42
hyper values, 55

dimension counts, 55
dimension indices, starting, 55
dimension intervals, 55
example, 55
reading, 53
record count, 55
record interval, 55
record number, starting, 55
writing, 53

multiple variable, 58
record numbers, 58
variable count, 58
variable list, 58

sequential values, 53, 57
current value, 57
example, 57

single values, 54
dimension indices, 54
record number, 54

arrays, 44, 53
closing, 42
compression, 7, 52

163

algorithms, 65
reserve percentage, 52

creating, 41
data speci�cation, 44

changing, 44
data type, 44
number of elements, 44
selecting, 44

deleting, 43
dimensionality, 41, 44
majority, 53

changing, 54, 82
example, 53
selecting, 54

naming, 41, 43
case sensitivity, 43
trailing blanks, 43

non-record-variant (NRV), 45
numbering, 43, 90

assigning, 43
opening, 42
pad values, 45, 47, 56, 59, 106

default, 49, 60
specifying, 60
usage, 59

record-variant (RV), 45
records, 46

allocated, 49
blocking factor, 50
compression, 52

reserve percentage, 52
deleting, 51
indexing, 35
initial, 49
maximum, 46
numbering, 48
physical, 45{46
sparse, 48
virtual, 45{46

reserve percentage, 52
rVariables, 8, 41
sparseness

arrays, 52
records, 48

changing, 82
standard, 42
subarrays, 44{45
values

monotonicity, 93
virtual, 45

variances, 10, 55

changing, 45
dimensional, 45

example, 45
record, 45{46

example, 46
selecting, 45

zVariables, 10, 41
variance

dimensional, 45
record, 45

wildcard characters, 67

XDR, 37

zMode, 29

164

